Difference between revisions of "009C Sample Final 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">Determine if the following series converges or diverges. Please give your reason(s).
+
<span class="exam"> Determine if the following series converges or diverges. Please give your reason(s).
  
<span class="exam">(a) &nbsp;<math>\sum_{n=1}^{\infty} \frac{n!}{(2n)!}</math>
+
<span class="exam">(a) &nbsp;<math>\sum_{n=1}^{\infty} \frac{n!}{(2n)!}</math>  
  
<span class="exam">(b) &nbsp;<math>\sum_{n=1}^{\infty} (-1)^n \frac{1}{n+1}</math>
+
<span class="exam">(b) &nbsp;<math>\sum_{n=1}^{\infty} (-1)^n\frac{1}{n+1}</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 48: Line 48:
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)!}{(2(n+1))!} \cdot\frac{(2n)!}{n!}\bigg|}\\
+
\displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)!}{(2(n+1))!} \frac{(2n)!}{n!}\bigg|}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)n!}{(2n+2)(2n+1)(2n)!} \cdot \frac{(2n)!}{n!}\bigg|}\\
+
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)n!}{(2n+2)(2n+1)(2n)!} \frac{(2n)!}{n!}\bigg|}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n+1}{(2n+2)(2n+1)}}\\
 
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n+1}{(2n+2)(2n+1)}}\\
Line 82: Line 82:
 
|-
 
|-
 
|Let &nbsp;<math style="vertical-align: -16px"> b_n=\frac{1}{n+1}.</math>
 
|Let &nbsp;<math style="vertical-align: -16px"> b_n=\frac{1}{n+1}.</math>
 +
|-
 +
|First, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{1}{n+1}\ge 0</math>
 +
|-
 +
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|-
 
|The sequence &nbsp;<math style="vertical-align: -5px">\{b_n\}</math>&nbsp; is decreasing since
 
|The sequence &nbsp;<math style="vertical-align: -5px">\{b_n\}</math>&nbsp; is decreasing since
Line 87: Line 93:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n+2}<\frac{1}{n+1}</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n+2}<\frac{1}{n+1}</math>
 
|-
 
|-
|for all &nbsp;<math style="vertical-align: -3px">n\ge 0.</math>
+
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|}
 
|}
  
Line 106: Line 112:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp;&nbsp; converges
+
|&nbsp;&nbsp; '''(a)''' &nbsp;&nbsp; converges (by the Ratio Test)
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' &nbsp;&nbsp; converges
+
|&nbsp;&nbsp; '''(b)''' &nbsp;&nbsp; converges (by the Alternating Series Test)
 
|}
 
|}
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:16, 17 March 2017

Determine if the following series converges or diverges. Please give your reason(s).

(a)  

(b)  

Foundations:  
1. Ratio Test
        Let    be a series and  
        Then,

        If    the series is absolutely convergent.

        If    the series is divergent.

        If    the test is inconclusive.

2. If a series absolutely converges, then it also converges.
3. Alternating Series Test
        Let    be a positive, decreasing sequence where  
        Then,    and  
        converge.


Solution:

(a)

Step 1:  
We begin by using the Ratio Test.
We have

       

Step 2:  
Since
       
the series is absolutely convergent by the Ratio Test.
Therefore, the series converges.

(b)

Step 1:  
For
       
we notice that this series is alternating.
Let  
First, we have
       
for all  
The sequence    is decreasing since
       
for all  
Step 2:  
Also,
       
Therefore, the series     converges
by the Alternating Series Test.


Final Answer:  
   (a)    converges (by the Ratio Test)
   (b)    converges (by the Alternating Series Test)

Return to Sample Exam