Difference between revisions of "009C Sample Final 3, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 112: | Line 112: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | '''(a)''' converges | + | | '''(a)''' converges (by the Ratio Test) |
|- | |- | ||
| − | | '''(b)''' converges | + | | '''(b)''' converges (by the Alternating Series Test) |
|} | |} | ||
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 11:04, 17 March 2017
Determine if the following series converges or diverges. Please give your reason(s).
(a)
(b)
| Foundations: |
|---|
| 1. Ratio Test |
| Let be a series and |
| Then, |
|
If the series is absolutely convergent. |
|
If the series is divergent. |
|
If the test is inconclusive. |
| 2. If a series absolutely converges, then it also converges. |
| 3. Alternating Series Test |
| Let be a positive, decreasing sequence where |
| Then, and |
| converge. |
Solution:
(a)
| Step 1: |
|---|
| We begin by using the Ratio Test. |
| We have |
|
|
| Step 2: |
|---|
| Since |
| the series is absolutely convergent by the Ratio Test. |
| Therefore, the series converges. |
(b)
| Step 1: |
|---|
| For |
| we notice that this series is alternating. |
| Let |
| First, we have |
| for all |
| The sequence is decreasing since |
| for all |
| Step 2: |
|---|
| Also, |
| Therefore, the series converges |
| by the Alternating Series Test. |
| Final Answer: |
|---|
| (a) converges (by the Ratio Test) |
| (b) converges (by the Alternating Series Test) |