Difference between revisions of "009B Sample Midterm 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 75: | Line 75: | ||
|Also, we need to change the bounds of integration. | |Also, we need to change the bounds of integration. | ||
|- | |- | ||
− | |Plugging in our values into the equation <math style="vertical-align: -5px">u=\sin(x),</math> we get | + | |Plugging in our values into the equation <math style="vertical-align: -5px">u=\sin(x),</math> we get |
|- | |- | ||
| <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1.</math> | | <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1.</math> |
Revision as of 13:38, 14 March 2017
Evaluate the indefinite and definite integrals.
(a)
(b)
Foundations: |
---|
How would you integrate |
You can use -substitution. |
Let |
Then, |
Thus, |
|
Solution:
(a)
Step 1: |
---|
We use -substitution. |
Let |
Then, and |
Therefore, the integral becomes |
Step 2: |
---|
We now have |
(b)
Step 1: |
---|
We use -substitution. |
Let |
Then, |
Also, we need to change the bounds of integration. |
Plugging in our values into the equation we get |
and |
Therefore, the integral becomes |
Step 2: |
---|
We now have |
|
Final Answer: |
---|
(a) |
(b) |