Difference between revisions of "009B Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 14: Line 14:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp; You could use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.
+
&nbsp; &nbsp; &nbsp; &nbsp; You can use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -2px">u=\sin x.</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -2px">u=\sin x.</math>  
Line 43: Line 43:
 
|Using the identity &nbsp;<math style="vertical-align: -4px">\sin^2x+\cos^2x=1,</math>  
 
|Using the identity &nbsp;<math style="vertical-align: -4px">\sin^2x+\cos^2x=1,</math>  
 
|-
 
|-
|we get &nbsp;<math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math>
+
|we get  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -1px">\sin^2x=1-\cos^2x.</math>
 
|-
 
|-
 
|If we use this identity, we have
 
|If we use this identity, we have

Revision as of 13:33, 14 March 2017

Evaluate the integral:


Foundations:  
1. Recall the trig identity
       
2. How would you integrate  

        You can use  -substitution.

        Let  
        Then,  
        Thus,

       


Solution:

Step 1:  
First, we write
       
Using the identity  
we get
       
If we use this identity, we have

       

Step 2:  
Now, we use  -substitution.
Let  
Then,  
Therefore,

       


Final Answer:  
       

Return to Sample Exam