Difference between revisions of "009A Sample Midterm 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 44: Line 44:
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{-3}{(3x)(3x)}}\\
 
& = & \displaystyle{\frac{-3}{(3x)(3x)}}\\
& = & \displaystyle{\frac{-1}{3x^2}.}
+
& = & \displaystyle{-\frac{1}{3x^2}.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 52: Line 52:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{dy}{dx}=\frac{-1}{3x^2}</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{dy}{dx}=-\frac{1}{3x^2}</math>
 
|-
 
|-
 
|  
 
|  
 
|}
 
|}
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:14, 13 March 2017

Use the definition of the derivative to find     for the function  


Foundations:  


Solution:

Step 1:  
Let  
Using the limit definition of derivative, we have
       
Step 2:  
Now, we get a common denominator for the fractions in the numerator.
Hence, we have
       


Final Answer:  
       

Return to Sample Exam