Difference between revisions of "009A Sample Midterm 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 102: Line 102:
 
|If we look at the graph from the left of &nbsp;<math style="vertical-align: -13px">x=\frac{\pi}{2}</math> &nbsp; and go towards &nbsp; <math style="vertical-align: -13px">\frac{\pi}{2},</math>
 
|If we look at the graph from the left of &nbsp;<math style="vertical-align: -13px">x=\frac{\pi}{2}</math> &nbsp; and go towards &nbsp; <math style="vertical-align: -13px">\frac{\pi}{2},</math>
 
|-
 
|-
|we see that &nbsp;<math style="vertical-align: -5px">\tan(x)</math> &nbsp; goes to &nbsp;<math style="vertical-align: -2px">+\infty.</math>
+
|we see that &nbsp;<math style="vertical-align: -5px">\tan(x)</math> &nbsp; goes to &nbsp;<math style="vertical-align: -2px">\infty.</math>
 
|-
 
|-
 
|Therefore,  
 
|Therefore,  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x)=+\infty.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x)=\infty.</math>
 
|}
 
|}
  
Line 117: Line 117:
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{3}{7}</math>
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{3}{7}</math>
 
|-
 
|-
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>+\infty</math>  
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>\infty</math>  
 
|}
 
|}
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:12, 13 March 2017

Evaluate the following limits.

(a) Find  

(b) Find  

(c) Evaluate  


Foundations:  


Solution:

(a)

Step 1:  
We begin by noticing that we plug in    into
       
we get  
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have

       

(c)

Step 1:  
We begin by looking at the graph of  
which is displayed below.
(Insert graph)
Step 2:  
We are taking a left hand limit. So, we approach     from the left.
If we look at the graph from the left of     and go towards  
we see that     goes to  
Therefore,
       


Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam