Difference between revisions of "009B Sample Final 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 69: Line 69:
 
|Now, we use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.
 
|Now, we use &nbsp;<math style="vertical-align: 0px">u</math>-substitution.
 
|-
 
|-
|Let &nbsp;<math style="vertical-align: -5px">u=\cos(x).</math>&nbsp; Then, &nbsp;<math style="vertical-align: -5px">du=-\sin(x)dx</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">-du=\sin(x)dx.</math>
+
|Let &nbsp;<math style="vertical-align: -5px">u=\cos(x).</math>&nbsp;  
 +
|-
 +
|Then, &nbsp;<math style="vertical-align: -5px">du=-\sin(x)dx</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">-du=\sin(x)dx.</math>
 
|-
 
|-
 
|Therefore, we have
 
|Therefore, we have

Revision as of 14:48, 12 March 2017

Find the following integrals.

(a)  

(b)  

Foundations:  
1. Integration by parts tells us that
       
2. Since    we have
       


Solution:

(a)

Step 1:  
To calculate this integral, we use integration by parts.
Let    and  
Then,    and  
Therefore, we have
       
Step 2:  
Then, we integrate to get
       

(b)

Step 1:  
First, we use the identity    to get
       
Step 2:  
Now, we use  -substitution.
Let   
Then,    and  
Therefore, we have
       


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam