Difference between revisions of "009B Sample Final 3, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 57: | Line 57: | ||
|Also, we need to change the bounds of integration. | |Also, we need to change the bounds of integration. | ||
|- | |- | ||
| − | |Plugging in our values into the equation <math style="vertical-align: -5px">u=4x,</math> | + | |Plugging in our values into the equation <math style="vertical-align: -5px">u=4x,</math> we get |
|- | |- | ||
| − | | | + | | <math style="vertical-align: -6px">u_1=4(0)=0</math> and <math style="vertical-align: -16px">u_2=4\bigg(\frac{\sqrt{3}}{4}\bigg)=\sqrt{3}.</math> |
|- | |- | ||
|Therefore, the integral becomes | |Therefore, the integral becomes | ||
Revision as of 14:42, 12 March 2017
Evaluate the following integrals.
(a)
(b)
(c)
| Foundations: |
|---|
| 1. |
| 2. How would you integrate |
|
You could use -substitution. |
| Let |
| Then, |
|
Thus, |
|
|
Solution:
(a)
| Step 1: |
|---|
| First, we notice |
| Now, we use -substitution. |
| Let |
| Then, and |
| Also, we need to change the bounds of integration. |
| Plugging in our values into the equation we get |
| and |
| Therefore, the integral becomes |
| Step 2: |
|---|
| We now have |
|
|
(b)
| Step 1: |
|---|
| We use -substitution. Let |
| Then, and |
| Therefore, the integral becomes |
| Step 2: |
|---|
| We now have |
(c)
| Step 1: |
|---|
| We use -substitution. |
| Let |
| Then, |
| Also, we need to change the bounds of integration. |
| Plugging in our values into the equation |
| we get and |
| Therefore, the integral becomes |
| Step 2: |
|---|
| We now have |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) |