Difference between revisions of "009B Sample Final 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 35: Line 35:
 
|We start by calculating &nbsp;<math style="vertical-align: -16px">\frac{dx}{dy}.</math>  
 
|We start by calculating &nbsp;<math style="vertical-align: -16px">\frac{dx}{dy}.</math>  
 
|-
 
|-
|Since &nbsp;<math style="vertical-align: -17px">x=y^3,~ \frac{dx}{dy}=3y^2.</math>
+
|Since &nbsp;<math style="vertical-align: -4px">x=y^3,</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dx}{dy}=3y^2.</math>
 
|-
 
|-
 
|Now, we are going to integrate with respect to &nbsp;<math style="vertical-align: -3px">y.</math>
 
|Now, we are going to integrate with respect to &nbsp;<math style="vertical-align: -3px">y.</math>
Line 65: Line 67:
 
|We have
 
|We have
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>u_1=1+9(0)^4=1</math>&nbsp; and &nbsp;<math>u_2=1+9(1)^4=10.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">u_1=1+9(0)^4=1</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">u_2=1+9(1)^4=10.</math>
 
|-
 
|-
 
|Thus, we get
 
|Thus, we get
Line 111: Line 113:
 
|We have  
 
|We have  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>u_1=1+\frac{27^2(1)}{2^2}=1+\frac{27^2}{2^2}</math> and &nbsp;<math>u_2=1+\frac{27^2(4)}{2^2}=1+27^2.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">u_1=1+\frac{27^2(1)}{2^2}=1+\frac{27^2}{2^2}</math>&nbsp; and &nbsp;<math style="vertical-align: -13px">u_2=1+\frac{27^2(4)}{2^2}=1+27^2.</math>
 
|-
 
|-
 
|Hence, we now have
 
|Hence, we now have

Revision as of 14:39, 12 March 2017

(a) Find the area of the surface obtained by rotating the arc of the curve

between    and    about the  -axis.

(b) Find the length of the arc

between the points    and  

Foundations:  
1. The surface area    of a function    rotated about the  -axis is given by

         where  

2. The formula for the length    of a curve    where    is

       


Solution:

(a)

Step 1:  
We start by calculating  
Since  
       
Now, we are going to integrate with respect to  
Using the formula given in the Foundations section,
we have
       
where    is the surface area.
Step 2:  
Now, we use  -substitution.
Let  
Then,    and  
Also, since this is a definite integral, we need to change the bounds of integration.
We have
         and  
Thus, we get
       

(b)

Step 1:  
First, we calculate  
Since    we have
       
Then, the arc length    of the curve is given by
       
Step 2:  
Then, we have
       
Now, we use  -substitution.
Let  
Then,    and  
Also, since this is a definite integral, we need to change the bounds of integration.
We have
         and  
Hence, we now have
       
Step 3:  
Therefore, we have
       


Final Answer:  
   (a)   
   (b)   

Return to Sample Exam