Difference between revisions of "009B Sample Final 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
::<math>y^3=x</math>
 
::<math>y^3=x</math>
  
<span class="exam">between <math style="vertical-align: -5px">(0,0)</math> and <math style="vertical-align: -5px">(1,1)</math> about the <math style="vertical-align: -4px">y</math>-axis.
+
<span class="exam">between &nbsp;<math style="vertical-align: -5px">(0,0)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">(1,1)</math>&nbsp; about the &nbsp;<math style="vertical-align: -4px">y</math>-axis.
  
 
<span class="exam">(b) Find the length of the arc  
 
<span class="exam">(b) Find the length of the arc  
Line 9: Line 9:
 
::<math>y=1+9x^{\frac{3}{2}}</math>
 
::<math>y=1+9x^{\frac{3}{2}}</math>
  
<span class="exam">between the points <math style="vertical-align: -5px">(1,10)</math> and <math style="vertical-align: -5px">(4,73).</math>
+
<span class="exam">between the points &nbsp;<math style="vertical-align: -5px">(1,10)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">(4,73).</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 14:32, 12 March 2017

(a) Find the area of the surface obtained by rotating the arc of the curve

between    and    about the  -axis.

(b) Find the length of the arc

between the points    and  

Foundations:  
1. The surface area    of a function    rotated about the  -axis is given by

         where  

2. The formula for the length    of a curve    where    is

       


Solution:

(a)

Step 1:  
We start by calculating  
Since  
Now, we are going to integrate with respect to  
Using the formula given in the Foundations section,
we have
       
where    is the surface area.
Step 2:  
Now, we use  -substitution.
Let  
Then,    and  
Also, since this is a definite integral, we need to change the bounds of integration.
We have
         and  
Thus, we get
       

(b)

Step 1:  
First, we calculate  
Since    we have
       
Then, the arc length    of the curve is given by
       
Step 2:  
Then, we have
       
Now, we use  -substitution.
Let  
Then,    and  
Also, since this is a definite integral, we need to change the bounds of integration.
We have
        and  
Hence, we now have
       
Step 3:  
Therefore, we have
       


Final Answer:  
   (a)   
   (b)   

Return to Sample Exam