Difference between revisions of "009C Sample Final 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam"> Determine if the following series converges or diverges. Please give your reason(s).
 
<span class="exam"> Determine if the following series converges or diverges. Please give your reason(s).
  
<span class="exam">(a) &nbsp;<math>\sum_{n=1}^{+\infty} \frac{n!}{(2n)!}</math>  
+
<span class="exam">(a) &nbsp;<math>\sum_{n=1}^{\infty} \frac{n!}{(2n)!}</math>  
  
<span class="exam">(b) &nbsp;<math>\sum_{n=1}^{+\infty} (-1)^n\frac{1}{n+1}</math>
+
<span class="exam">(b) &nbsp;<math>\sum_{n=1}^{\infty} (-1)^n\frac{1}{n+1}</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 13:56, 12 March 2017

Determine if the following series converges or diverges. Please give your reason(s).

(a)  

(b)  

Foundations:  
1. Ratio Test
        Let    be a series and  
        Then,

        If    the series is absolutely convergent.

        If    the series is divergent.

        If    the test is inconclusive.

2. If a series absolutely converges, then it also converges.
3. Alternating Series Test
        Let    be a positive, decreasing sequence where  
        Then,    and  
        converge.


Solution:

(a)

Step 1:  
We begin by using the Ratio Test.
We have

       

Step 2:  
Since
       
the series is absolutely convergent by the Ratio Test.
Therefore, the series converges.

(b)

Step 1:  
For
       
we notice that this series is alternating.
Let  
The sequence    is decreasing since
       
for all  
Step 2:  
Also,
       
Therefore, the series     converges
by the Alternating Series Test.


Final Answer:  
   (a)    converges
   (b)    converges

Return to Sample Exam