Difference between revisions of "009A Sample Final 2, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 65: | Line 65: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |We proceed using L'Hôpital's Rule. So, we have |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow 1}\frac{3x^2}{10x^9}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 79: | Line 76: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, we have |
| − | |||
| − | |||
| − | |||
| − | |||
|- | |- | ||
| − | | | + | | <math>\begin{array}{rcl} |
| + | \displaystyle{\lim_{x\rightarrow 1} \frac{x^3-1}{x^{10}-1}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow 1}\frac{3x^2}{10x^9}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{3(1)^2}{10(1)^9}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{3}{10}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 96: | Line 95: | ||
|'''(b)''' | |'''(b)''' | ||
|- | |- | ||
| − | |'''(c)''' | + | | '''(c)''' <math>\frac{3}{10}</math> |
|} | |} | ||
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 19:47, 7 March 2017
Compute
(a)
(b)
(c)
| Foundations: |
|---|
| In each part, compute the limit. If the limit is infinite, be sure to specify positive or negative infinity.
(a) (b) (c) |
Solution:
(a)
| Step 1: |
|---|
| Step 2: |
|---|
(b)
| Step 1: |
|---|
| Step 2: |
|---|
(c)
| Step 1: |
|---|
| We proceed using L'Hôpital's Rule. So, we have |
|
|
| Step 2: |
|---|
| Now, we have |
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) |