Difference between revisions of "009A Sample Final 2, Problem 10"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 86: | Line 86: | ||
|To find the intervals when the function is concave up or concave down, we need to find <math style="vertical-align: -5px">f''(x).</math> | |To find the intervals when the function is concave up or concave down, we need to find <math style="vertical-align: -5px">f''(x).</math> | ||
|- | |- | ||
− | | | + | |Using the Quotient Rule and Chain Rule, we have |
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{f''(x)} & = & \displaystyle{\frac{(x^2+1)^2(-4(x^2-1))'+4(x^2-1)((x^2+1)^2)'}{((x^2+1)^2)^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{(x^2+1)^2(-8x)+4(x^2-1)2(x^2+1)(x^2+1)'}{(x^2+1)^4}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{(x^2+1)^2(-8x)+4(x^2-1)2(x^2+1)(2x)}{(x^2+1)^4}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{(x^2+1)(-8x)+16(x^2-1)x}{(x^2+1)^3}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{8x^3-24x}{(x^2+1)^3}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{8x(x^2-3)}{(x^2+1)^3}.} | ||
+ | \end{array}</math> | ||
|- | |- | ||
|We set <math style="vertical-align: -5px">f''(x)=0.</math> | |We set <math style="vertical-align: -5px">f''(x)=0.</math> | ||
|- | |- | ||
− | |So, we have <math style="vertical-align: -1px">0 | + | |So, we have <math style="vertical-align: -1px">8x(x^2-3)=0.</math> |
|- | |- | ||
− | | | + | |Hence, |
|- | |- | ||
− | | | + | | <math style="vertical-align: 0px">x=0,~x=-\sqrt{3},~x=\sqrt{3}.</math> |
+ | |- | ||
+ | |This value breaks up the number line into four intervals: | ||
+ | |- | ||
+ | | <math style="vertical-align: -5px">(-\infty,-\sqrt{3}),(-\sqrt{3},0)(0,\sqrt{3}),(\sqrt{3},\infty).</math> | ||
|} | |} | ||
Line 100: | Line 118: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Again, we use test points in these four intervals. |
+ | |- | ||
+ | |For <math style="vertical-align: -5px">x=-2,</math> we have <math style="vertical-align: -15px">f''(x)=\frac{-16}{125}<0.</math> | ||
+ | |- | ||
+ | |For <math style="vertical-align: -5px">x=-1,</math> we have <math style="vertical-align: -5px">f''(x)=2>0.</math> | ||
+ | |- | ||
+ | |For <math style="vertical-align: -5px">x=1,</math> we have <math style="vertical-align: -5px">f''(x)=-2<0.</math> | ||
+ | |- | ||
+ | |For <math style="vertical-align: -5px">x=2,</math> we have <math style="vertical-align: -15px">f''(x)=\frac{16}{125}>0.</math> | ||
+ | |- | ||
+ | |Thus, <math style="vertical-align: -5px">f(x)</math> is concave up on <math style="vertical-align: -5px">(-\sqrt{3},0)\cup(\sqrt{3},\infty),</math> and concave down on <math style="vertical-align: -5px">(-\infty,-\sqrt{3})\cup(0,\sqrt{3}).</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 3: | ||
+ | |- | ||
+ | |The inflection points occur at | ||
+ | |- | ||
+ | | <math style="vertical-align: 0px">x=0,~x=-\sqrt{3},~x=\sqrt{3}.</math> | ||
+ | |- | ||
+ | |Plugging these into <math style="vertical-align: -5px">f(x),</math> we get the inflection points | ||
+ | |- | ||
+ | | <math style="vertical-align: 0px">(0,0),(-\sqrt{3},-\sqrt{3}),(\sqrt{3},\sqrt{3}).</math> | ||
|} | |} | ||
Line 143: | Line 183: | ||
| The local maximum value of <math style="vertical-align: -4px">f</math> is <math style="vertical-align: 0px">2</math> and the local minimum value of <math style="vertical-align: -4px">f</math> is <math style="vertical-align: 0px">-2</math> | | The local maximum value of <math style="vertical-align: -4px">f</math> is <math style="vertical-align: 0px">2</math> and the local minimum value of <math style="vertical-align: -4px">f</math> is <math style="vertical-align: 0px">-2</math> | ||
|- | |- | ||
− | | '''(b)''' | + | | '''(b)''' <math style="vertical-align: -5px">f(x)</math> is concave up on <math style="vertical-align: -5px">(-\sqrt{3},0)\cup(\sqrt{3},\infty),</math> and concave down on <math style="vertical-align: -5px">(-\infty,-\sqrt{3})\cup(0,\sqrt{3}).</math> |
+ | |- | ||
+ | | The inflection points are <math style="vertical-align: -5px">(0,0),(-\sqrt{3},-\sqrt{3}),(\sqrt{3},\sqrt{3}).</math> | ||
|- | |- | ||
| '''(c)''' <math>y=0</math> | | '''(c)''' <math>y=0</math> |
Revision as of 20:13, 7 March 2017
Let
(a) Find all local maximum and local minimum values of find all intervals where is increasing and all intervals where is decreasing.
(b) Find all inflection points of the function find all intervals where the function is concave upward and all intervals where is concave downward.
(c) Find all horizontal asymptotes of the graph
(d) Sketch the graph of
Foundations: |
---|
1. is increasing when and is decreasing when |
2. The First Derivative Test tells us when we have a local maximum or local minimum. |
3. is concave up when and is concave down when |
4. Inflection points occur when |
Solution:
(a)
Step 1: |
---|
We start by taking the derivative of |
Using the Quotient Rule, we have |
Now, we set |
So, we have |
Hence, we have and |
So, these values of break up the number line into 3 intervals: |
Step 2: |
---|
To check whether the function is increasing or decreasing in these intervals, we use testpoints. |
For |
For |
For |
Thus, is increasing on and decreasing on |
Step 3: |
---|
Using the First Derivative Test, has a local minimum at and a local maximum at |
Thus, the local maximum and local minimum values of are |
(b)
Step 1: |
---|
To find the intervals when the function is concave up or concave down, we need to find |
Using the Quotient Rule and Chain Rule, we have |
We set |
So, we have |
Hence, |
This value breaks up the number line into four intervals: |
Step 2: |
---|
Again, we use test points in these four intervals. |
For we have |
For we have |
For we have |
For we have |
Thus, is concave up on and concave down on |
Step 3: |
---|
The inflection points occur at |
Plugging these into we get the inflection points |
(c)
Step 1: |
---|
First, we note that the degree of the numerator is and |
the degree of the denominator is |
Step 2: |
---|
Since the degree of the denominator is greater than the degree of the numerator, |
has a horizontal asymptote |
(d): |
---|
Insert sketch |
Final Answer: |
---|
(a) is increasing on and decreasing on |
The local maximum value of is and the local minimum value of is |
(b) is concave up on and concave down on |
The inflection points are |
(c) |
(d) See above |