Difference between revisions of "009A Sample Final 2, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 13: Line 13:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|'''1.''' <math style="vertical-align: -5px">f(x)</math>&nbsp; is increasing when &nbsp;<math style="vertical-align: -5px">f'(x)>0</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is decreasing when &nbsp;<math style="vertical-align: -5px">f'(x)<0.</math>
 
|-
 
|-
|
+
|'''2. The First Derivative Test''' tells us when we have a local maximum or local minimum.
 
|-
 
|-
|
+
|'''3.''' <math style="vertical-align: -5px">f(x)</math>&nbsp; is concave up when &nbsp;<math style="vertical-align: -5px">f''(x)>0</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is concave down when &nbsp;<math style="vertical-align: -5px">f''(x)<0.</math>
 
|-
 
|-
|
+
|'''4.''' Inflection points occur when &nbsp;<math style="vertical-align: -5px">f''(x)=0.</math>
 
|}
 
|}
  
Line 94: Line 94:
 
!(d): &nbsp;
 
!(d): &nbsp;
 
|-
 
|-
|
+
|Insert sketch
 
|-
 
|-
 
|
 
|

Revision as of 19:11, 7 March 2017

Let

(a) Find all local maximum and local minimum values of    find all intervals where    is increasing and all intervals where    is decreasing.

(b) Find all inflection points of the function    find all intervals where the function    is concave upward and all intervals where    is concave downward.

(c) Find all horizontal asymptotes of the graph  

(d) Sketch the graph of  

Foundations:  
1.   is increasing when    and    is decreasing when  
2. The First Derivative Test tells us when we have a local maximum or local minimum.
3.   is concave up when    and    is concave down when  
4. Inflection points occur when  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  
(d):  
Insert sketch


Final Answer:  
(a)
(b)
(c)
(d)

Return to Sample Exam