Difference between revisions of "009A Sample Final 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 24: Line 24:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Based on the description of &nbsp;<math style="vertical-align: -5px">f(x),</math>&nbsp;
 +
|-
 +
|we know &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous on
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">(-\infty,3)\cup (3,\infty).</math>&nbsp;
 
|-
 
|-
|
+
|Now, we need to see if &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous at &nbsp;<math style="vertical-align: 0px">x=3.</math>&nbsp;
 
|-
 
|-
 
|
 
|
Line 36: Line 38:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|We have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 3^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^+} \frac{x^2-2x-3}{x-3}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 3^+} \frac{(x-3)(x+1)}{x-3}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 3^+} x+1}\\
 +
&&\\
 +
& = & \displaystyle{4.}
 +
\end{array}</math>
 +
|-
 +
|Similarly,
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow 3^-}f(x)=4.</math>
 +
|-
 +
|Since
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: 0px">\lim_{x\rightarrow 3^-}f(x)=\lim_{x\rightarrow 3^+}f(x)</math>&nbsp;
 +
|-
 +
|we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow 3}f(x)=4.</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|But, since
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f(3)=5,</math>
 +
|-
 +
|we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow 3}f(x)\ne f(3).</math>
 +
|-
 +
|Therefore, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is not continuous at &nbsp;<math style="vertical-align: 0px">x=3.</math>&nbsp;
 
|-
 
|-
|
+
|&nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous only on &nbsp;<math style="vertical-align: -5px">(-\infty,3)\cup (3,\infty).</math>&nbsp;
 
|}
 
|}
  
Line 45: Line 83:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|&nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous on &nbsp;<math style="vertical-align: -5px">(-\infty,3)\cup (3,\infty).</math>&nbsp;
 
|}
 
|}
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 19:08, 7 March 2017

Let

For what values of    is    continuous?

Foundations:  
  is continuous at    if
       


Solution:

Step 1:  
Based on the description of   
we know    is continuous on
        
Now, we need to see if    is continuous at   
Step 2:  
We have
       
Similarly,
       
Since
        
we have
       
Step 3:  
But, since
       
we have
       
Therefore,    is not continuous at   
   is continuous only on   


Final Answer:  
   is continuous on   

Return to Sample Exam