Difference between revisions of "009A Sample Final 2, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 24: | Line 24: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |Based on the description of <math style="vertical-align: -5px">f(x),</math> |
| + | |- | ||
| + | |we know <math style="vertical-align: -5px">f(x)</math> is continuous on | ||
|- | |- | ||
| − | | | + | | <math style="vertical-align: -5px">(-\infty,3)\cup (3,\infty).</math> |
|- | |- | ||
| − | | | + | |Now, we need to see if <math style="vertical-align: -5px">f(x)</math> is continuous at <math style="vertical-align: 0px">x=3.</math> |
|- | |- | ||
| | | | ||
| Line 36: | Line 38: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |We have |
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\lim_{x\rightarrow 3^+}f(x)} & = & \displaystyle{\lim_{x\rightarrow 3^+} \frac{x^2-2x-3}{x-3}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{x\rightarrow 3^+} \frac{(x-3)(x+1)}{x-3}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{x\rightarrow 3^+} x+1}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{4.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Similarly, | ||
| + | |- | ||
| + | | <math>\lim_{x\rightarrow 3^-}f(x)=4.</math> | ||
| + | |- | ||
| + | |Since | ||
| + | |- | ||
| + | | <math style="vertical-align: 0px">\lim_{x\rightarrow 3^-}f(x)=\lim_{x\rightarrow 3^+}f(x)</math> | ||
| + | |- | ||
| + | |we have | ||
| + | |- | ||
| + | | <math>\lim_{x\rightarrow 3}f(x)=4.</math> | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 3: | ||
| + | |- | ||
| + | |But, since | ||
| + | |- | ||
| + | | <math>f(3)=5,</math> | ||
| + | |- | ||
| + | |we have | ||
| + | |- | ||
| + | | <math>\lim_{x\rightarrow 3}f(x)\ne f(3).</math> | ||
| + | |- | ||
| + | |Therefore, <math style="vertical-align: -5px">f(x)</math> is not continuous at <math style="vertical-align: 0px">x=3.</math> | ||
|- | |- | ||
| − | | | + | | <math style="vertical-align: -5px">f(x)</math> is continuous only on <math style="vertical-align: -5px">(-\infty,3)\cup (3,\infty).</math> |
|} | |} | ||
| Line 45: | Line 83: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | | + | | <math style="vertical-align: -5px">f(x)</math> is continuous on <math style="vertical-align: -5px">(-\infty,3)\cup (3,\infty).</math> |
|} | |} | ||
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 19:08, 7 March 2017
Let
For what values of is continuous?
| Foundations: |
|---|
| is continuous at if |
Solution:
| Step 1: |
|---|
| Based on the description of |
| we know is continuous on |
| Now, we need to see if is continuous at |
| Step 2: |
|---|
| We have |
| Similarly, |
| Since |
| we have |
| Step 3: |
|---|
| But, since |
| we have |
| Therefore, is not continuous at |
| is continuous only on |
| Final Answer: |
|---|
| is continuous on |