Difference between revisions of "009A Sample Final 2, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 88: | Line 88: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Let <math>f(x)=\sin(x)</math> and <math>g(x)=\sin^{-1}x.</math> | + | |Let <math style="vertical-align: -5px">f(x)=\sin(x)</math> and <math style="vertical-align: -5px">g(x)=\sin^{-1}x.</math> |
|- | |- | ||
|These functions are inverses of each other since | |These functions are inverses of each other since | ||
|- | |- | ||
− | | <math>f(g(x))=x</math> and <math>g(f(x))=x.</math> | + | | <math style="vertical-align: -5px">f(g(x))=x</math> and <math style="vertical-align: -5px">g(f(x))=x.</math> |
|- | |- | ||
|Therefore, | |Therefore, | ||
Line 102: | Line 102: | ||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
− | |Now, let <math>y=\sin^{-1}(x).</math> Then, <math>x=\sin(y).</math> | + | |Now, let <math style="vertical-align: -5px">y=\sin^{-1}(x).</math> Then, <math style="vertical-align: -5px">x=\sin(y).</math> |
|- | |- | ||
− | |So, <math>\cos(\sin^{-1} x)=\cos(y).</math> | + | |So, <math style="vertical-align: -5px">\cos(\sin^{-1} x)=\cos(y).</math> |
|- | |- | ||
|Therefore, | |Therefore, | ||
Line 117: | Line 117: | ||
|- | |- | ||
| <math>\cos^2 y+\sin^2 y =1,</math> | | <math>\cos^2 y+\sin^2 y =1,</math> | ||
+ | |- | ||
+ | |we have | ||
|- | |- | ||
| <math>\begin{array}{rcl} | | <math>\begin{array}{rcl} | ||
Line 137: | Line 139: | ||
| '''(b)''' <math>\frac{-x\sin(\sqrt{x+1})}{2\sqrt{x+1}}+\cos(\sqrt{x+1})</math> | | '''(b)''' <math>\frac{-x\sin(\sqrt{x+1})}{2\sqrt{x+1}}+\cos(\sqrt{x+1})</math> | ||
|- | |- | ||
− | | '''(c)''' <math> | + | | '''(c)''' <math>\frac{1}{\sqrt{1-x^2}}</math> |
|} | |} | ||
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 18:36, 7 March 2017
Compute
(a)
(b)
(c)
Foundations: |
---|
1. Product Rule |
2. Quotient Rule |
3. Chain Rule |
Solution:
(a)
Step 1: | |
---|---|
Using the Chain Rule, we have | |
Step 2: |
---|
Now, using the Quotient Rule, we have |
(b)
Step 1: |
---|
Using the Product Rule, we have |
Step 2: |
---|
Now, using the Chain Rule, we get |
(c)
Step 1: |
---|
Let and |
These functions are inverses of each other since |
and |
Therefore, |
Now, let Then, |
So, |
Therefore, |
Step 2: |
---|
Now, since |
we have |
Hence, |
Final Answer: |
---|
(a) |
(b) |
(c) |