Difference between revisions of "009A Sample Final 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 88: Line 88:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|  
+
|Let &nbsp;<math>f(x)=\sin(x)</math>&nbsp; and &nbsp;<math>g(x)=\sin^{-1}x.</math>
 
|-
 
|-
|
+
|These functions are inverses of each other since
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f(g(x))=x</math>&nbsp; and &nbsp; <math>g(f(x))=x.</math>
 
|-
 
|-
|
+
|Therefore,
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{g'(x)} & = & \displaystyle{\frac{1}{f'(g(x))}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{\cos(\sin^{-1} x)}.}
 +
\end{array}</math>
 +
|-
 +
|Now, let &nbsp;<math>y=\sin^{-1}(x).</math>&nbsp; Then, &nbsp;<math>x=\sin(y).</math>
 +
|-
 +
|So, &nbsp;<math>\cos(\sin^{-1} x)=\cos(y).</math>
 +
|-
 +
|Therefore,
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>g'(x)=\frac{1}{\cos(y)}.</math>
 
|}
 
|}
  
Line 102: Line 114:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, since
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\cos^2 y+\sin^2 y =1,</math>
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\cos(y)} & = & \displaystyle{\sqrt{1-\sin^2 y}}\\
 +
&&\\
 +
& = & \displaystyle{\sqrt{1-x^2}.}
 +
\end{array}</math>
 
|-
 
|-
|
+
|Hence,
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>g'(x)=\frac{1}{\sqrt{1-x^2}}.</math>
 
|}
 
|}
  
Line 119: Line 137:
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\frac{-x\sin(\sqrt{x+1})}{2\sqrt{x+1}}+\cos(\sqrt{x+1})</math>
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>\frac{-x\sin(\sqrt{x+1})}{2\sqrt{x+1}}+\cos(\sqrt{x+1})</math>
 
|-
 
|-
|'''(c)'''
+
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp; <math>g'(x)=\frac{1}{\sqrt{1-x^2}}</math>
 
|}
 
|}
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:33, 7 March 2017

Compute  

(a)  

(b)  

(c)  

Foundations:  
1. Product Rule
       
2. Quotient Rule
       
3. Chain Rule
       


Solution:

(a)

Step 1:  
Using the Chain Rule, we have
       
Step 2:  
Now, using the Quotient Rule, we have
       

(b)

Step 1:  
Using the Product Rule, we have
       
Step 2:  
Now, using the Chain Rule, we get
       

(c)

Step 1:  
Let    and  
These functions are inverses of each other since
         and  
Therefore,
       
Now, let    Then,  
So,  
Therefore,
       
Step 2:  
Now, since
       
       
Hence,
       


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam