Difference between revisions of "009A Sample Final 2, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 94: | Line 94: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |First, we have |
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
− | |- | + | \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2(1+\frac{2}{x^2})}}{2x-1}}\\ |
− | + | &&\\ | |
− | + | & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{|x|\sqrt{1+\frac{2}{x^2}}}{2x-1}}\\ | |
− | + | &&\\ | |
− | + | & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{-x\sqrt{1+\frac{2}{x^2}}}{x(2-\frac{1}{x})}}\\ | |
− | + | &&\\ | |
+ | & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{-1\sqrt{1+\frac{2}{x^2}}}{(2-\frac{1}{x})}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 108: | Line 110: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{-1\sqrt{1+\frac{2}{x^2}}}{(2-\frac{1}{x})} }\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{-\sqrt{1+0}}{(2-0)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{-1}{2}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Revision as of 17:51, 7 March 2017
Compute
(a)
(b)
(c)
Foundations: |
---|
L'Hôpital's Rule |
Suppose that and are both zero or both |
If is finite or |
then |
Solution:
(a)
Step 1: |
---|
We begin by noticing that we plug in into |
we get |
Step 2: |
---|
Now, we multiply the numerator and denominator by the conjugate of the numerator. |
Hence, we have |
(b)
Step 1: |
---|
We proceed using L'Hôpital's Rule. So, we have |
|
Step 2: |
---|
Now, we plug in to get |
(c)
Step 1: |
---|
First, we have |
Step 2: |
---|
Now, |
Final Answer: |
---|
(a) |
(b) |
(c) |