Difference between revisions of "009A Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 94: Line 94:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|  
+
|First, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
|-
+
\displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2(1+\frac{2}{x^2})}}{2x-1}}\\
|
+
&&\\
|-
+
& = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{|x|\sqrt{1+\frac{2}{x^2}}}{2x-1}}\\
|
+
&&\\
|-
+
& = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{-x\sqrt{1+\frac{2}{x^2}}}{x(2-\frac{1}{x})}}\\
|
+
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{-1\sqrt{1+\frac{2}{x^2}}}{(2-\frac{1}{x})}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 108: Line 110:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now,
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{-1\sqrt{1+\frac{2}{x^2}}}{(2-\frac{1}{x})} }\\
 +
&&\\
 +
& = & \displaystyle{\frac{-\sqrt{1+0}}{(2-0)}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{-1}{2}.}
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 17:51, 7 March 2017

Compute

(a)  

(b)  

(c)  

Foundations:  
L'Hôpital's Rule
        Suppose that    and    are both zero or both  

        If    is finite or  

        then  


Solution:

(a)

Step 1:  
We begin by noticing that we plug in    into
       
we get  
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
       

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       

Step 2:  
Now, we plug in    to get
       

(c)

Step 1:  
First, we have
       
Step 2:  
Now,
       


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam