Difference between revisions of "009A Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 64: Line 64:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|We proceed using L'Hôpital's Rule. So, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 0} \frac{\sin^2 (x)}{3x}} & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow 0}\frac{2\sin(x)\cos(x)}{3}.}
 +
\end{array}</math>
 
|-
 
|-
 
|
 
|
Line 73: Line 78:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we plug in &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; to get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 0} \frac{\sin^2 (x)}{3x}} & = & \displaystyle{\frac{2\sin(0)\cos(0)}{3}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{2(0)(1)}{3}}\\
 +
&&\\
 +
& = & \displaystyle{0.}
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 17:35, 7 March 2017

Compute

(a)  

(b)  

(c)  

Foundations:  
L'Hôpital's Rule
        Suppose that    and    are both zero or both  

        If    is finite or  

        then  


Solution:

(a)

Step 1:  
We begin by noticing that we plug in    into
       
we get  
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
       

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       

Step 2:  
Now, we plug in    to get
       

(c)

Step 1:  
Step 2:  


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam