Difference between revisions of "009A Sample Final 2, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 29: | Line 29: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |We begin by noticing that we plug in <math style="vertical-align: 0px">x=4</math> into |
− | |||
− | |||
|- | |- | ||
− | | | + | | <math>\frac{\sqrt{x+5}-3}{x-4},</math> |
|- | |- | ||
− | | | + | |we get <math style="vertical-align: -12px">\frac{0}{0}.</math> |
|} | |} | ||
Line 41: | Line 39: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we multiply the numerator and denominator by the conjugate of the numerator. |
+ | |- | ||
+ | |Hence, we have | ||
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\lim_{x\rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}} & = & \displaystyle{\lim_{x\rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}\frac{(\sqrt{x+5}+3)}{(\sqrt{x+5}+3)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{x\rightarrow 4} \frac{(x+5)-9}{(x-4)(\sqrt{x+5}+3)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{x\rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x+5}+3)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{x\rightarrow 4} \frac{1}{\sqrt{x+5}+3}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{ \frac{1}{\sqrt{9}+3}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{6}.} | ||
+ | \end{array}</math> | ||
|- | |- | ||
| | | | ||
Line 94: | Line 108: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | | '''(a)''' <math>\frac{1}{6}</math> |
|- | |- | ||
− | |'''(b)''' | + | | '''(b)''' <math>0</math> |
|- | |- | ||
− | |'''(c)''' | + | | '''(c)''' <math>\frac{-1}{2}</math> |
|} | |} | ||
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 17:30, 7 March 2017
Compute
(a)
(b)
(c)
Foundations: |
---|
L'Hôpital's Rule |
Suppose that and are both zero or both |
If is finite or |
then |
Solution:
(a)
Step 1: |
---|
We begin by noticing that we plug in into |
we get |
Step 2: |
---|
Now, we multiply the numerator and denominator by the conjugate of the numerator. |
Hence, we have |
(b)
Step 1: |
---|
Step 2: |
---|
(c)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |
(c) |