Difference between revisions of "009A Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 29: Line 29:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We begin by noticing that we plug in &nbsp;<math style="vertical-align: 0px">x=4</math>&nbsp; into
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{\sqrt{x+5}-3}{x-4},</math>
 
|-
 
|-
|
+
|we get &nbsp; <math style="vertical-align: -12px">\frac{0}{0}.</math>
 
|}
 
|}
  
Line 41: Line 39:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we multiply the numerator and denominator by the conjugate of the numerator.
 +
|-
 +
|Hence, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}} & = & \displaystyle{\lim_{x\rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}\frac{(\sqrt{x+5}+3)}{(\sqrt{x+5}+3)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 4} \frac{(x+5)-9}{(x-4)(\sqrt{x+5}+3)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x+5}+3)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 4} \frac{1}{\sqrt{x+5}+3}}\\
 +
&&\\
 +
& = & \displaystyle{ \frac{1}{\sqrt{9}+3}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{6}.}
 +
\end{array}</math>
 
|-
 
|-
 
|
 
|
Line 94: Line 108:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp;<math>\frac{1}{6}</math>
 
|-
 
|-
|'''(b)'''
+
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;<math>0</math>
 
|-
 
|-
|'''(c)'''
+
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp;<math>\frac{-1}{2}</math>
 
|}
 
|}
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:30, 7 March 2017

Compute

(a)  

(b)  

(c)  

Foundations:  
L'Hôpital's Rule
        Suppose that    and    are both zero or both  

        If    is finite or  

        then  


Solution:

(a)

Step 1:  
We begin by noticing that we plug in    into
       
we get  
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
       

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam