Difference between revisions of "009A Sample Final 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 17: Line 17:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We use implicit differentiation to find the derivative of the given curve.
 +
|-
 +
|Using the product and chain rule, we get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>6x+xy'+y+2yy'=5.</math>
 +
|-
 +
|We rearrange the terms and solve for &nbsp;<math style="vertical-align: -5px">y'.</math>
 +
|-
 +
|Therefore,
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>xy'+2yy'=5-6x-y</math>
 
|-
 
|-
|
+
|and
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y'=\frac{5-6x-y}{x+2y}.</math>
 
|}
 
|}
  
Line 29: Line 37:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Therefore, the slope of the tangent line at the point &nbsp;<math style="vertical-align: -5px">(1,-2)</math>&nbsp; is
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{m} & = & \displaystyle{\frac{5-6(1)-(-2)}{1-4}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{-3}.}
 +
\end{array}</math>
 +
|-
 +
|Hence, the equation of the tangent line to the curve at the point &nbsp;<math style="vertical-align: -5px">(1,-2)</math>&nbsp; is
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f(x)=-\frac{1}{3}(x-1)-2.</math>
 
|-
 
|-
 
|
 
|
Line 38: Line 56:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f(x)=-\frac{1}{3}(x-1)-2.</math>
 
|}
 
|}
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:03, 7 March 2017

Use implicit differentiation to find an equation of the tangent line to the curve at the given point.

  at the point  
Foundations:  
The equation of the tangent line to    at the point    is
          where  


Solution:

Step 1:  
We use implicit differentiation to find the derivative of the given curve.
Using the product and chain rule, we get
       
We rearrange the terms and solve for  
Therefore,
       
and
       
Step 2:  
Therefore, the slope of the tangent line at the point    is
       
Hence, the equation of the tangent line to the curve at the point    is
       


Final Answer:  
       

Return to Sample Exam