Difference between revisions of "009A Sample Final 2, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
 +
|-
 +
|'''1.''' '''Intermediate Value Theorem'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;If &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous on a closed interval &nbsp;<math style="vertical-align: -5px">[a,b]</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; is any number
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;between &nbsp;<math style="vertical-align: -5px">f(a)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(b),</math>&nbsp; then there is at least one number &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; in the closed interval such that &nbsp;<math style="vertical-align: -5px">f(x)=c.</math>
 +
|-
 +
|'''2.'''  '''Mean Value Theorem'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Suppose &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is a function that satisfies the following:
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is continuous on the closed interval &nbsp;<math style="vertical-align: -5px">[a,b].</math>
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; is differentiable on the open interval &nbsp;<math style="vertical-align: -5px">(a,b).</math>
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;Then, there is a number &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; such that &nbsp;<math style="vertical-align: 0px">a<c<b</math>&nbsp; and &nbsp;<math style="vertical-align: -14px">f'(c)=\frac{f(b)-f(a)}{b-a}.</math>
 
|}
 
|}
  
Line 19: Line 31:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|First, we note that
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f(0)=-2.</math>
 +
|-
 +
|Also,
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>f(1)=1.</math>
 +
|-
 +
|Since &nbsp;<math style="vertical-align: -5px">f(0)<0</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">f(1)>0,</math>&nbsp;
 +
|-
 +
|there exists &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; with &nbsp;<math style="vertical-align: -1px">0<x<1</math>&nbsp; such that
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f(x)=0</math>&nbsp;
 
|-
 
|-
|
+
|by the Intermediate Value Theorem.
 
|-
 
|-
|
+
|Hence, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has at least one zero.
 
|}
 
|}
  
Line 31: Line 53:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Suppose that &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has more than one zero.
 +
|-
 +
|So, there exist &nbsp;<math style="vertical-align: -4px">a,b</math>&nbsp; such that
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f(a)=f(b)=0.</math>
 +
|-
 +
|Then, by the Mean Value Theorem, there exists &nbsp;<math style="vertical-align: 0px">c</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">a<c<b</math>&nbsp; such that
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">f'(c)=0.</math>
 +
|-
 +
|We have &nbsp;<math style="vertical-align: -5px">f'(x)=3x^2+2.</math>&nbsp;
 +
|-
 +
|Since &nbsp;<math style="vertical-align: -5px">x^2\ge 0,</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px"> f'(x) \ge 2.</math>
 
|-
 
|-
|
+
|Therefore, it is impossible for &nbsp;<math style="vertical-align: -5px">f'(c)=0.</math>&nbsp; Hence, &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; has at most one zero.
 
|}
 
|}
  
Line 40: Line 76:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; See solution above.
 
|}
 
|}
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:28, 7 March 2017

Show that the equation    has exactly one real root.

Foundations:  
1. Intermediate Value Theorem
       If    is continuous on a closed interval    and    is any number

       between    and    then there is at least one number    in the closed interval such that  

2. Mean Value Theorem
        Suppose    is a function that satisfies the following:

         is continuous on the closed interval  

         is differentiable on the open interval  

       Then, there is a number    such that    and  


Solution:

Step 1:  
First, we note that
       
Also,
       
Since    and   
there exists    with    such that
        
by the Intermediate Value Theorem.
Hence,    has at least one zero.
Step 2:  
Suppose that    has more than one zero.
So, there exist    such that
       
Then, by the Mean Value Theorem, there exists    with    such that
       
We have   
Since  
       
Therefore, it is impossible for    Hence,    has at most one zero.


Final Answer:  
        See solution above.

Return to Sample Exam