Difference between revisions of "009A Sample Final 3, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 29: Line 29:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We begin by noticing that we plug in &nbsp;<math style="vertical-align: 0px">x=0</math>&nbsp; into
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{x}{3-\sqrt{9-x}},</math>
 
|-
 
|-
|
+
|we get &nbsp; <math style="vertical-align: -12px">\frac{0}{0}.</math>
 
|}
 
|}
  
Line 41: Line 39:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we multiply the numerator and denominator by the conjugate of the denominator.
 +
|-
 +
|Hence, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 0} \frac{x}{3-\sqrt{9-x}}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{x}{3-\sqrt{9-x}}\frac{(3+\sqrt{9+x})}{(3+\sqrt{9+x})}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{x(3+\sqrt{9+x})}{9-(9+x)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{x(3+\sqrt{9+x})}{-x}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{3+\sqrt{9+x}}{-1}}\\
 +
&&\\
 +
& = & \displaystyle{ \frac{3+\sqrt{9}}{-1}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{6}{-1}}\\
 +
&&\\
 +
& = & \displaystyle{-6.}
 +
\end{array}</math>
 
|-
 
|-
 
|
 
|
Line 105: Line 121:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp;<math>-6</math>
 
|-
 
|-
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;<math>1</math>
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;<math>1</math>

Revision as of 12:38, 7 March 2017

Compute

(a)  

(b)  

(c)  

Foundations:  
L'Hôpital's Rule
        Suppose that    and    are both zero or both  

        If    is finite or  

        then  


Solution:

(a)

Step 1:  
We begin by noticing that we plug in    into
       
we get  
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the denominator.
Hence, we have
       

(b)

Step 1:  
We proceed using L'Hôpital's Rule. So, we have

       

Step 2:  
Now, we plug in    to get
       

(c)

Step 1:  
We begin by factoring the numerator and denominator. We have

       

So, we can cancel    in the numerator and denominator. Thus, we have

       

Step 2:  
Now, we can just plug in    to get
       


Final Answer:  
   (a)   
   (b)   
   (c)   

Return to Sample Exam