Difference between revisions of "009A Sample Final 3, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
Line 67: Line 67:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|  
+
|We begin by factoring the numerator and denominator. We have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}\,=\,\lim_{x\rightarrow -2}\frac{(x+2)(x-3)}{(x+2)(x^2-2x+4)}.</math>
 
|-
 
|-
|
+
|So, we can cancel &nbsp;<math style="vertical-align: -2px">x+2</math>&nbsp; in the numerator and denominator. Thus, we have
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}\,=\,\lim_{x\rightarrow -2}\frac{x-3}{x^2-2x+4}.</math>
 
|}
 
|}
  
Line 81: Line 81:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we can just plug in &nbsp;<math style="vertical-align: -1px">x=-2</math>&nbsp; to get
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
|-
+
\displaystyle{\lim_{x\rightarrow -2} \frac{x^2-x-6}{x^3+8}} & = & \displaystyle{\frac{-2-3}{(-2)^2-2(-2)+4}}\\
|
+
&&\\
|-
+
& = & \displaystyle{\frac{-5}{12}.}
|
+
\end{array}</math>
 
|}
 
|}
  
Line 98: Line 98:
 
|'''(b)'''
 
|'''(b)'''
 
|-
 
|-
|'''(c)'''
+
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp;<math>\frac{-5}{12}</math>
 
|}
 
|}
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 12:26, 7 March 2017

Compute

(a)  

(b)  

(c)  

Foundations:  
L'Hôpital's Rule
        Suppose that    and    are both zero or both  

        If    is finite or  

        then  


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
We begin by factoring the numerator and denominator. We have

       

So, we can cancel    in the numerator and denominator. Thus, we have

       

Step 2:  
Now, we can just plug in    to get
       


Final Answer:  
(a)
(b)
   (c)   

Return to Sample Exam