Difference between revisions of "009A Sample Final 3, Problem 9"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 29: | Line 29: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |To find the critical points, first we need to find <math style="vertical-align: -5px">g'(x).</math> |
| − | |||
| − | |||
|- | |- | ||
| − | | | + | |Using the Chain Rule, we have |
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{g'(x)} & = & \displaystyle{\frac{2}{3}(2x^2-8x)^{-\frac{1}{3}}(2x^2-8x)'}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{2}{3}(2x^2-8x)^{-\frac{1}{3}}(4x-8)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{8x-16}{3\sqrt[3]{2x^2-8x}}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |First, we note that <math style="vertical-align: -5px">g'(x)</math> is undefined when | ||
| + | |- | ||
| + | | <math>3\sqrt[3]{2x^2-8x}=0.</math> | ||
| + | |- | ||
| + | |Solving for <math style="vertical-align: -4px">x,</math> we get | ||
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
| + | \displaystyle{0} & = & \displaystyle{2x^2-8x}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{x(2x-8).} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Therefore, <math style="vertical-align: -5px">g'(x)</math> is undefined when <math style="vertical-align: -4px">x=0,4.</math> | ||
| + | |- | ||
| + | |Now, we need to set <math style="vertical-align: -5px">g'(x)=0.</math> | ||
| + | |- | ||
| + | |So, we get | ||
|- | |- | ||
| | | | ||
| + | <math>8x-16=0.</math> | ||
|- | |- | ||
| − | | | + | |Solving, we get <math style="vertical-align: 0px">x=2.</math> |
| + | |- | ||
| + | |Thus, the critical points for <math style="vertical-align: -5px">f(x)</math> are <math style="vertical-align: -5px">(0,0),(2,4),(4,0).</math> | ||
|} | |} | ||
| Line 66: | Line 92: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' | + | | '''(a)''' <math>(0,0),(2,4),(4,0).</math> |
|- | |- | ||
|'''(b)''' | |'''(b)''' | ||
|} | |} | ||
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 12:12, 7 March 2017
Let
(a) Find all critical points of over the -interval
(b) Find absolute maximum and absolute minimum of over
| Foundations: |
|---|
| 1. To find the critical points for we set and solve for |
|
Also, we include the values of where is undefined. |
| 2. To find the absolute maximum and minimum of on an interval |
|
we need to compare the values of our critical points with and |
Solution:
(a)
| Step 1: |
|---|
| To find the critical points, first we need to find |
| Using the Chain Rule, we have |
|
|
| Step 2: |
|---|
| First, we note that is undefined when |
| Solving for we get |
| Therefore, is undefined when |
| Now, we need to set |
| So, we get |
|
|
| Solving, we get |
| Thus, the critical points for are |
(b)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) |
| (b) |