Difference between revisions of "009A Sample Final 3, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
Line 29: Line 29:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|To find the critical points, first we need to find &nbsp;<math style="vertical-align: -5px">g'(x).</math>
|-
 
|
 
 
|-
 
|-
|
+
|Using the Chain Rule, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{g'(x)} & = & \displaystyle{\frac{2}{3}(2x^2-8x)^{-\frac{1}{3}}(2x^2-8x)'}\\
 +
&&\\
 +
& = & \displaystyle{\frac{2}{3}(2x^2-8x)^{-\frac{1}{3}}(4x-8)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{8x-16}{3\sqrt[3]{2x^2-8x}}.}
 +
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|First, we note that &nbsp;<math style="vertical-align: -5px">g'(x)</math>&nbsp; is undefined when
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>3\sqrt[3]{2x^2-8x}=0.</math>
 +
|-
 +
|Solving for &nbsp;<math style="vertical-align: -4px">x,</math>&nbsp; we get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{0} & = & \displaystyle{2x^2-8x}\\
 +
&&\\
 +
& = & \displaystyle{x(2x-8).}
 +
\end{array}</math>
 +
|-
 +
|Therefore, &nbsp;<math style="vertical-align: -5px">g'(x)</math>&nbsp; is undefined when &nbsp;<math style="vertical-align: -4px">x=0,4.</math>&nbsp;
 +
|-
 +
|Now, we need to set &nbsp;<math style="vertical-align: -5px">g'(x)=0.</math>
 +
|-
 +
|So, we get
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>8x-16=0.</math>
 
|-
 
|-
|
+
|Solving, we get &nbsp;<math style="vertical-align: 0px">x=2.</math>
 +
|-
 +
|Thus, the critical points for &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; are &nbsp;<math style="vertical-align: -5px">(0,0),(2,4),(4,0).</math>
 
|}
 
|}
  
Line 66: Line 92:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp;&nbsp;<math>(0,0),(2,4),(4,0).</math>
 
|-
 
|-
 
|'''(b)'''
 
|'''(b)'''
 
|}
 
|}
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 12:12, 7 March 2017

Let

(a) Find all critical points of    over the  -interval  

(b) Find absolute maximum and absolute minimum of    over  

Foundations:  
1. To find the critical points for    we set    and solve for  

        Also, we include the values of    where    is undefined.

2. To find the absolute maximum and minimum of    on an interval  

        we need to compare the    values of our critical points with    and  


Solution:

(a)

Step 1:  
To find the critical points, first we need to find  
Using the Chain Rule, we have

       

Step 2:  
First, we note that    is undefined when
       
Solving for    we get
       
Therefore,    is undefined when   
Now, we need to set  
So, we get

       

Solving, we get  
Thus, the critical points for    are  

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
(b)

Return to Sample Exam