Difference between revisions of "009A Sample Final 3, Problem 9"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 29: | Line 29: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |To find the critical points, first we need to find <math style="vertical-align: -5px">g'(x).</math> |
− | |||
− | |||
|- | |- | ||
− | | | + | |Using the Chain Rule, we have |
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{g'(x)} & = & \displaystyle{\frac{2}{3}(2x^2-8x)^{-\frac{1}{3}}(2x^2-8x)'}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{2}{3}(2x^2-8x)^{-\frac{1}{3}}(4x-8)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{8x-16}{3\sqrt[3]{2x^2-8x}}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |First, we note that <math style="vertical-align: -5px">g'(x)</math> is undefined when | ||
+ | |- | ||
+ | | <math>3\sqrt[3]{2x^2-8x}=0.</math> | ||
+ | |- | ||
+ | |Solving for <math style="vertical-align: -4px">x,</math> we get | ||
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{0} & = & \displaystyle{2x^2-8x}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{x(2x-8).} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Therefore, <math style="vertical-align: -5px">g'(x)</math> is undefined when <math style="vertical-align: -4px">x=0,4.</math> | ||
+ | |- | ||
+ | |Now, we need to set <math style="vertical-align: -5px">g'(x)=0.</math> | ||
+ | |- | ||
+ | |So, we get | ||
|- | |- | ||
| | | | ||
+ | <math>8x-16=0.</math> | ||
|- | |- | ||
− | | | + | |Solving, we get <math style="vertical-align: 0px">x=2.</math> |
+ | |- | ||
+ | |Thus, the critical points for <math style="vertical-align: -5px">f(x)</math> are <math style="vertical-align: -5px">(0,0),(2,4),(4,0).</math> | ||
|} | |} | ||
Line 66: | Line 92: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | | '''(a)''' <math>(0,0),(2,4),(4,0).</math> |
|- | |- | ||
|'''(b)''' | |'''(b)''' | ||
|} | |} | ||
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 12:12, 7 March 2017
Let
(a) Find all critical points of over the -interval
(b) Find absolute maximum and absolute minimum of over
Foundations: |
---|
1. To find the critical points for we set and solve for |
Also, we include the values of where is undefined. |
2. To find the absolute maximum and minimum of on an interval |
we need to compare the values of our critical points with and |
Solution:
(a)
Step 1: |
---|
To find the critical points, first we need to find |
Using the Chain Rule, we have |
|
Step 2: |
---|
First, we note that is undefined when |
Solving for we get |
Therefore, is undefined when |
Now, we need to set |
So, we get |
|
Solving, we get |
Thus, the critical points for are |
(b)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |