Difference between revisions of "009A Sample Final 3, Problem 9"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 10: | Line 10: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |'''1.''' To find the critical points for <math style="vertical-align: -5px">f(x),</math> we set <math style="vertical-align: -5px">f'(x)=0</math> and solve for <math style="vertical-align: -1px">x.</math> |
|- | |- | ||
| | | | ||
+ | Also, we include the values of <math style="vertical-align: -1px">x</math> where <math style="vertical-align: -5px">f'(x)</math> is undefined. | ||
|- | |- | ||
− | | | + | |'''2.''' To find the absolute maximum and minimum of <math style="vertical-align: -5px">f(x)</math> on an interval <math>[a,b],</math> |
|- | |- | ||
| | | | ||
+ | we need to compare the <math style="vertical-align: -5px">y</math> values of our critical points with <math style="vertical-align: -5px">f(a)</math> and <math style="vertical-align: -5px">f(b).</math> | ||
|} | |} | ||
Revision as of 11:58, 7 March 2017
Let
(a) Find all critical points of over the -interval
(b) Find absolute maximum and absolute minimum of over
Foundations: |
---|
1. To find the critical points for we set and solve for |
Also, we include the values of where is undefined. |
2. To find the absolute maximum and minimum of on an interval |
we need to compare the values of our critical points with and |
Solution:
(a)
Step 1: |
---|
Step 2: |
---|
(b)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |