Difference between revisions of "009A Sample Final 3, Problem 10"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 1: | Line 1: | ||
| − | <span class="exam">Let <math>y=\tan(x).</math> | + | <span class="exam">Let <math style="vertical-align: -5px">y=\tan(x).</math> |
| − | <span class="exam">(a) Find the differential <math>dy</math> of <math>y=\tan (x)</math> at <math>x=\frac{\pi}{4}.</math> | + | <span class="exam">(a) Find the differential <math style="vertical-align: -4px">dy</math> of <math style="vertical-align: -5px">y=\tan (x)</math> at <math style="vertical-align: -15px">x=\frac{\pi}{4}.</math> |
| − | <span class="exam">(b) Use differentials to find an approximate value for <math>\tan(0.885).</math> Hint: <math>\frac{\pi}{4}\approx 0.785.</math> | + | <span class="exam">(b) Use differentials to find an approximate value for <math style="vertical-align: -5px">\tan(0.885).</math> Hint: <math style="vertical-align: -15px">\frac{\pi}{4}\approx 0.785.</math> |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| Line 48: | Line 48: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |First, we find <math style="vertical-align: -1px">dx.</math> We have |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|- | |- | ||
| − | | | + | | <math style="vertical-align: -1px">dx=0.885-\frac{\pi}{4}\approx 0.885-0.785=0.1.</math> |
|- | |- | ||
| − | | | + | |Then, we plug this into the differential from part (a). |
|- | |- | ||
| − | | | + | |So, we have |
| − | |||
| − | |||
|- | |- | ||
| | | | ||
| + | <math>dy\,=\,2(0.1)\,=\,0.2.</math> | ||
|} | |} | ||
| Line 78: | Line 63: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, we add the value for <math style="vertical-align: -4px">dy</math> to <math style="vertical-align: -16px">\tan\bigg(\frac{\pi}{4}\bigg)</math> to get an |
|- | |- | ||
| − | | | + | |approximate value of <math style="vertical-align: -5px">\tan(0.885).</math> |
|- | |- | ||
| − | | | + | |Hence, we have |
|- | |- | ||
| | | | ||
| + | <math>\tan(0.885)\,\approx \, \tan\bigg(\frac{\pi}{4}\bigg)+0.2\,=\,1.2.</math> | ||
|} | |} | ||
| Line 91: | Line 77: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' | + | | '''(a)''' <math style="vertical-align: -5px">dy=2\,dx</math> |
| − | |||
| − | |||
|- | |- | ||
| − | |'''( | + | | '''(b)''' <math style="vertical-align: -1px">1.2</math> |
|} | |} | ||
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 08:39, 7 March 2017
Let
(a) Find the differential of at
(b) Use differentials to find an approximate value for Hint:
| Foundations: |
|---|
| What is the differential of at |
|
Since the differential is |
Solution:
(a)
| Step 1: |
|---|
| First, we find the differential |
| Since we have |
|
|
| Step 2: |
|---|
| Now, we plug into the differential from Step 1. |
| So, we get |
|
|
(b)
| Step 1: |
|---|
| First, we find We have |
| Then, we plug this into the differential from part (a). |
| So, we have |
|
|
| Step 2: |
|---|
| Now, we add the value for to to get an |
| approximate value of |
| Hence, we have |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |