Difference between revisions of "009A Sample Final 3, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 22: Line 22:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we find the differential &nbsp;<math style="vertical-align: -4px">dy.</math>
|-
 
|
 
 
|-
 
|-
|
+
|Since &nbsp;<math style="vertical-align: -5px">y=\tan x,</math>&nbsp; we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>dy\,=\,\sec^2 x\,dx.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Now, we plug &nbsp;<math style="vertical-align: -15px">x=\frac{\pi}{4}</math>&nbsp; into the differential from Step 1.
 +
|-
 +
|So, we get
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>dy\,=\,\bigg(\sec\bigg(\frac{\pi}{4}\bigg)\bigg)^2\,dx\,=\,2\,dx.</math>
 
|-
 
|-
 
|
 
|

Revision as of 08:30, 7 March 2017

Let Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y=\tan(x).}

(a) Find the differential of at

(b) Use differentials to find an approximate value for Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \tan(0.885).} Hint: Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {\pi }{4}}\approx 0.785.}

Foundations:  
What is the differential    of    at  

        Since    the differential is  


Solution:

(a)

Step 1:  
First, we find the differential  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle dy.}
Since  Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y=\tan x,}   we have

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy\,=\,\sec^2 x\,dx.}

Step 2:  
Now, we plug  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=\frac{\pi}{4}}   into the differential from Step 1.
So, we get

       Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dy\,=\,\bigg(\sec\bigg(\frac{\pi}{4}\bigg)\bigg)^2\,dx\,=\,2\,dx.}

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  


Final Answer:  
(a)
(b)
(c)

Return to Sample Exam