Difference between revisions of "009A Sample Final 3, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 22: Line 22:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we find the differential &nbsp;<math style="vertical-align: -4px">dy.</math>
|-
 
|
 
 
|-
 
|-
|
+
|Since &nbsp;<math style="vertical-align: -5px">y=\tan x,</math>&nbsp; we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>dy\,=\,\sec^2 x\,dx.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Now, we plug &nbsp;<math style="vertical-align: -15px">x=\frac{\pi}{4}</math>&nbsp; into the differential from Step 1.
 +
|-
 +
|So, we get
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>dy\,=\,\bigg(\sec\bigg(\frac{\pi}{4}\bigg)\bigg)^2\,dx\,=\,2\,dx.</math>
 
|-
 
|-
 
|
 
|

Revision as of 09:30, 7 March 2017

Let

(a) Find the differential of at

(b) Use differentials to find an approximate value for Hint:

Foundations:  
What is the differential    of    at  

        Since    the differential is  


Solution:

(a)

Step 1:  
First, we find the differential  
Since    we have

       

Step 2:  
Now, we plug    into the differential from Step 1.
So, we get

       

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  


Final Answer:  
(a)
(b)
(c)

Return to Sample Exam