Difference between revisions of "009A Sample Final 3, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 95: | Line 95: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |First, we write |
|- | |- | ||
| − | | | + | | <math>\begin{array}{rcl} |
| − | + | \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}} & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}\frac{\big(\frac{1}{x^3}\big)}{\big(\frac{1}{x^3}\big)}}\\ | |
| − | + | &&\\ | |
| − | + | & = & \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9-\frac{1}{x^5}}}{3+\frac{4}{x^2}}.} | |
| − | + | \end{array}</math> | |
| − | |||
| − | |||
|} | |} | ||
| Line 109: | Line 107: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, we have |
| − | |||
| − | |||
| − | |||
| − | |||
|- | |- | ||
| − | | | + | | <math>\begin{array}{rcl} |
| + | \displaystyle{\lim_{x\rightarrow -\infty} \frac{\sqrt{9x^6-x}}{3x^3+4x}} & = & \displaystyle{\frac{\lim_{x\rightarrow -\infty} \sqrt{9-\frac{1}{x^5}}}{\lim_{x\rightarrow -\infty}3+\frac{4}{x^2}}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\sqrt{9}}{3}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{1.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 126: | Line 126: | ||
| '''(b)''' <math>\frac{-3}{4}</math> | | '''(b)''' <math>\frac{-3}{4}</math> | ||
|- | |- | ||
| − | |'''(c)''' | + | | '''(c)''' <math>1</math> |
|} | |} | ||
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 20:37, 6 March 2017
Find each of the following limits if it exists. If you think the limit does not exist provide a reason.
(a)
(b) given that
(c)
| Foundations: |
|---|
| 1. If we have |
| 2. |
Solution:
(a)
| Step 1: |
|---|
| Step 2: |
|---|
(b)
| Step 1: |
|---|
| Since |
| we have |
| Step 2: |
|---|
| If we multiply both sides of the last equation by we get |
| Now, using properties of limits, we have |
| Step 3: |
|---|
| Solving for in the last equation, |
| we get |
|
|
(c)
| Step 1: |
|---|
| First, we write |
| Step 2: |
|---|
| Now, we have |
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) |