Difference between revisions of "009A Sample Final 3, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 48: | Line 48: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |Since <math style="vertical-align: -12px">\lim_{x\rightarrow 8} 3 =3\ne 0,</math> |
| + | |- | ||
| + | |we have | ||
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
| + | \displaystyle{-2} & = & \displaystyle{\lim _{x\rightarrow 8} \bigg[\frac{xf(x)}{3}\bigg]}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\lim_{x\rightarrow 8} xf(x)}{\lim_{x\rightarrow 8} 3}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\lim_{x\rightarrow 8} xf(x)}{3}.} | ||
| + | \end{array}</math> | ||
|- | |- | ||
| | | | ||
| Line 55: | Line 65: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |If we multiply both sides of the last equation by <math>3,</math> we get | ||
| + | |- | ||
| + | | <math>-6=\lim_{x\rightarrow 8} xf(x)).</math> | ||
| + | |- | ||
| + | |Now, using properties of limits, we have | ||
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
| + | \displaystyle{10} & = & \displaystyle{\bigg(\lim_{x\rightarrow 8} x\bigg)\bigg(\lim_{x\rightarrow 8}f(x)\bigg)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{8\lim_{x\rightarrow 8} f(x).}\\ | ||
| + | \end{array}</math> | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 3: | ||
| + | |- | ||
| + | |Solving for <math style="vertical-align: -12px">\lim_{x\rightarrow 8} f(x)</math> in the last equation, | ||
| + | |- | ||
| + | |we get | ||
|- | |- | ||
| | | | ||
| + | <math> \lim_{x\rightarrow 8} f(x)=\frac{-3}{4}.</math> | ||
|} | |} | ||
| Line 93: | Line 124: | ||
|'''(a)''' | |'''(a)''' | ||
|- | |- | ||
| − | |'''(b)''' | + | | '''(b)''' <math>\frac{-3}{4}</math> |
|- | |- | ||
|'''(c)''' | |'''(c)''' | ||
|} | |} | ||
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 20:24, 6 March 2017
Find each of the following limits if it exists. If you think the limit does not exist provide a reason.
(a)
(b) given that
(c)
| Foundations: |
|---|
| 1. If we have |
| 2. |
Solution:
(a)
| Step 1: |
|---|
| Step 2: |
|---|
(b)
| Step 1: |
|---|
| Since |
| we have |
| Step 2: |
|---|
| If we multiply both sides of the last equation by we get |
| Now, using properties of limits, we have |
| Step 3: |
|---|
| Solving for in the last equation, |
| we get |
|
|
(c)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) |