Difference between revisions of "009A Sample Final 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam"> Find the derivative of the following functions:
 
<span class="exam"> Find the derivative of the following functions:
  
<span class="exam">(a) &nbsp;<math>g(\theta)=\frac{\pi^2}{(\sec\theta -\sin 2\theta)^2}</math>
+
<span class="exam">(a) &nbsp;<math style="vertical-align: -18px">g(\theta)=\frac{\pi^2}{(\sec\theta -\sin 2\theta)^2}</math>
  
<span class="exam">(b) &nbsp;<math>y=\cos(3\pi)+\tan^{-1}(\sqrt{x})</math>
+
<span class="exam">(b) &nbsp;<math style="vertical-align: -5px">y=\cos(3\pi)+\tan^{-1}(\sqrt{x})</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 64: Line 64:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y'=(\cos(3\pi))'+(\tan^{-1}(\sqrt{x}))'.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y'=(\cos(3\pi))'+(\tan^{-1}(\sqrt{x}))'.</math>
 
|-
 
|-
|Since &nbsp;<math style="vertical-align: 0px">\cos(3\pi)</math>&nbsp; is a constant,
+
|Since &nbsp;<math style="vertical-align: -5px">\cos(3\pi)</math>&nbsp; is a constant,
 
|-
 
|-
 
|we have
 
|we have

Revision as of 11:05, 6 March 2017

Find the derivative of the following functions:

(a)  

(b)  

Foundations:  
1. Chain Rule
       
2. Trig Derivatives
       
3. Inverse Trig Derivatives
       


Solution:

(a)

Step 1:  
First, we write
       
Now, using the Chain Rule, we have
       
Step 2:  
Now, using the Chain Rule a second time, we get
       

(b)

Step 1:  
First, we have
       
Since    is a constant,
we have
       
Therefore,
       
Step 2:  
Now, using the Chain Rule, we have
       


Final Answer:  
   (a)   
   (b)   

Return to Sample Exam