Difference between revisions of "009A Sample Final 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 60: Line 60:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y'=(\cos(3\pi))'+(\tan^{-1}(\sqrt{x}))'.</math>
 +
|-
 +
|Since &nbsp;<math style="vertical-align: 0px">\cos(3\pi)</math>&nbsp; is a constant,
 +
|-
 +
|we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>(\cos(3\pi))'=0.</math>
 +
|-
 +
|Therefore,
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y'=(\tan^{-1}(\sqrt{x}))'.</math>
 
|}
 
|}
  
Line 68: Line 78:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, using the Chain Rule, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{y'} & = & \displaystyle{(\tan^{-1}(\sqrt{x}))'}\\
 +
&&\\
 +
& = & \displaystyle{\bigg(\frac{1}{1+(\sqrt{x})^2}\bigg)(\sqrt{x})'}\\
 +
&&\\
 +
& = & \displaystyle{\bigg(\frac{1}{1+x}\bigg)\frac{1}{2\sqrt{x}}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 77: Line 95:
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>g'(\theta)=\frac{-2\pi^2(\sec\theta\tan\theta -2\cos (2\theta))}{(\sec\theta -\sin 2\theta)^{3}}</math>
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>g'(\theta)=\frac{-2\pi^2(\sec\theta\tan\theta -2\cos (2\theta))}{(\sec\theta -\sin 2\theta)^{3}}</math>
 
|-
 
|-
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;  
+
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp; <math>y'=\bigg(\frac{1}{1+x}\bigg)\frac{1}{2\sqrt{x}}</math>
 
|}
 
|}
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:02, 6 March 2017

Find the derivative of the following functions:

(a)  

(b)  

Foundations:  
1. Chain Rule
       
2. Trig Derivatives
       
3. Inverse Trig Derivatives
       


Solution:

(a)

Step 1:  
First, we write
       
Now, using the Chain Rule, we have
       
Step 2:  
Now, using the Chain Rule a second time, we get
       

(b)

Step 1:  
First, we have
       
Since    is a constant,
we have
       
Therefore,
       
Step 2:  
Now, using the Chain Rule, we have
       


Final Answer:  
   (a)   
   (b)   

Return to Sample Exam