Difference between revisions of "009A Sample Final 3, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 1: | Line 1: | ||
<span class="exam"> Find the derivative of the following functions: | <span class="exam"> Find the derivative of the following functions: | ||
| − | <span class="exam">(a) <math>g(\theta)=\frac{\pi^2}{(\sec\theta -\sin 2\theta)^2}</math> | + | <span class="exam">(a) <math>g(\theta)=\frac{\pi^2}{(\sec\theta -\sin 2\theta)^2}</math> |
| − | <span class="exam">(b) <math>y=\cos(3\pi)+\tan^{-1}(\sqrt{x})</math> | + | <span class="exam">(b) <math>y=\cos(3\pi)+\tan^{-1}(\sqrt{x})</math> |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| Line 30: | Line 30: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |First, we write |
|- | |- | ||
| − | | | + | | <math>g(\theta)=\pi^2(\sec\theta -\sin 2\theta)^{-2}.</math> |
|- | |- | ||
| − | | | + | |Now, using the Chain Rule, we have |
|- | |- | ||
| − | | | + | | <math>g'(\theta)=(-2)\pi^2(\sec\theta -\sin 2\theta)^{-3}(\sec\theta -\sin 2\theta)'.</math> |
|} | |} | ||
| Line 42: | Line 42: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, using the Chain Rule a second time, we get |
|- | |- | ||
| − | | | + | | <math>\begin{array}{rcl} |
| + | \displaystyle{g'(\theta)} & = & \displaystyle{(-2)\pi^2(\sec\theta -\sin 2\theta)^{-3}(\sec\theta -\sin 2\theta)'}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{(-2)\pi^2(\sec\theta -\sin 2\theta)^{-3}(\sec\theta\tan\theta -\cos (2\theta)(2\theta)')}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{(-2)\pi^2(\sec\theta -\sin 2\theta)^{-3}(\sec\theta\tan\theta -\cos (2\theta)(2))}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{-2\pi^2(\sec\theta\tan\theta -2\cos (2\theta))}{(\sec\theta -\sin 2\theta)^{3}}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 59: | Line 67: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
|- | |- | ||
| | | | ||
| Line 95: | Line 75: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' | + | | '''(a)''' <math>g'(\theta)=\frac{-2\pi^2(\sec\theta\tan\theta -2\cos (2\theta))}{(\sec\theta -\sin 2\theta)^{3}}</math> |
| − | |||
| − | |||
|- | |- | ||
| − | |'''( | + | | '''(b)''' |
|} | |} | ||
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 09:54, 6 March 2017
Find the derivative of the following functions:
(a)
(b)
| Foundations: | |
|---|---|
| 1. Chain Rule | |
| 2. Trig Derivatives | |
| 3. Inverse Trig Derivatives | |
Solution:
(a)
| Step 1: |
|---|
| First, we write |
| Now, using the Chain Rule, we have |
| Step 2: |
|---|
| Now, using the Chain Rule a second time, we get |
(b)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) |
| (b) |