Difference between revisions of "009A Sample Final 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam"> Find the derivative of the following functions:
 
<span class="exam"> Find the derivative of the following functions:
  
<span class="exam">(a) <math>g(\theta)=\frac{\pi^2}{(\sec\theta -\sin 2\theta)^2}</math>
+
<span class="exam">(a) &nbsp;<math>g(\theta)=\frac{\pi^2}{(\sec\theta -\sin 2\theta)^2}</math>
  
<span class="exam">(b) <math>y=\cos(3\pi)+\tan^{-1}(\sqrt{x})</math>
+
<span class="exam">(b) &nbsp;<math>y=\cos(3\pi)+\tan^{-1}(\sqrt{x})</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 30: Line 30:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|First, we write
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>g(\theta)=\pi^2(\sec\theta -\sin 2\theta)^{-2}.</math>
 
|-
 
|-
|
+
|Now, using the Chain Rule, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math>g'(\theta)=(-2)\pi^2(\sec\theta -\sin 2\theta)^{-3}(\sec\theta -\sin 2\theta)'.</math>
 
|}
 
|}
  
Line 42: Line 42:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, using the Chain Rule a second time, we get
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{g'(\theta)} & = & \displaystyle{(-2)\pi^2(\sec\theta -\sin 2\theta)^{-3}(\sec\theta -\sin 2\theta)'}\\
 +
&&\\
 +
& = & \displaystyle{(-2)\pi^2(\sec\theta -\sin 2\theta)^{-3}(\sec\theta\tan\theta -\cos (2\theta)(2\theta)')}\\
 +
&&\\
 +
& = & \displaystyle{(-2)\pi^2(\sec\theta -\sin 2\theta)^{-3}(\sec\theta\tan\theta -\cos (2\theta)(2))}\\
 +
&&\\
 +
& = & \displaystyle{\frac{-2\pi^2(\sec\theta\tan\theta -2\cos (2\theta))}{(\sec\theta -\sin 2\theta)^{3}}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 59: Line 67:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
|-
 
|
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
 
|-
 
|-
 
|
 
|
Line 95: Line 75:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''
+
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; <math>g'(\theta)=\frac{-2\pi^2(\sec\theta\tan\theta -2\cos (2\theta))}{(\sec\theta -\sin 2\theta)^{3}}</math>
|-
 
|'''(b)'''
 
 
|-
 
|-
|'''(c)'''
+
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;
 
|}
 
|}
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:54, 6 March 2017

Find the derivative of the following functions:

(a)  

(b)  

Foundations:  
1. Chain Rule
       
2. Trig Derivatives
       
3. Inverse Trig Derivatives
       


Solution:

(a)

Step 1:  
First, we write
       
Now, using the Chain Rule, we have
       
Step 2:  
Now, using the Chain Rule a second time, we get
       

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)   
   (b)   

Return to Sample Exam