Difference between revisions of "009A Sample Final 3, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
<span class="exam"> Find the derivative of the following functions: | <span class="exam"> Find the derivative of the following functions: | ||
− | <span class="exam">(a) <math>g(\theta)=\frac{\pi^2}{(\sec\theta -\sin 2\theta)^2}</math> | + | <span class="exam">(a) <math>g(\theta)=\frac{\pi^2}{(\sec\theta -\sin 2\theta)^2}</math> |
− | <span class="exam">(b) <math>y=\cos(3\pi)+\tan^{-1}(\sqrt{x})</math> | + | <span class="exam">(b) <math>y=\cos(3\pi)+\tan^{-1}(\sqrt{x})</math> |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 30: | Line 30: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |First, we write |
|- | |- | ||
− | | | + | | <math>g(\theta)=\pi^2(\sec\theta -\sin 2\theta)^{-2}.</math> |
|- | |- | ||
− | | | + | |Now, using the Chain Rule, we have |
|- | |- | ||
− | | | + | | <math>g'(\theta)=(-2)\pi^2(\sec\theta -\sin 2\theta)^{-3}(\sec\theta -\sin 2\theta)'.</math> |
|} | |} | ||
Line 42: | Line 42: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, using the Chain Rule a second time, we get |
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{g'(\theta)} & = & \displaystyle{(-2)\pi^2(\sec\theta -\sin 2\theta)^{-3}(\sec\theta -\sin 2\theta)'}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(-2)\pi^2(\sec\theta -\sin 2\theta)^{-3}(\sec\theta\tan\theta -\cos (2\theta)(2\theta)')}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(-2)\pi^2(\sec\theta -\sin 2\theta)^{-3}(\sec\theta\tan\theta -\cos (2\theta)(2))}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{-2\pi^2(\sec\theta\tan\theta -2\cos (2\theta))}{(\sec\theta -\sin 2\theta)^{3}}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 59: | Line 67: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
| | | | ||
Line 95: | Line 75: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | | '''(a)''' <math>g'(\theta)=\frac{-2\pi^2(\sec\theta\tan\theta -2\cos (2\theta))}{(\sec\theta -\sin 2\theta)^{3}}</math> |
− | |||
− | |||
|- | |- | ||
− | |'''( | + | | '''(b)''' |
|} | |} | ||
[[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 10:54, 6 March 2017
Find the derivative of the following functions:
(a)
(b)
Foundations: | |
---|---|
1. Chain Rule | |
2. Trig Derivatives | |
3. Inverse Trig Derivatives | |
Solution:
(a)
Step 1: |
---|
First, we write |
Now, using the Chain Rule, we have |
Step 2: |
---|
Now, using the Chain Rule a second time, we get |
(b)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |