Difference between revisions of "009C Sample Final 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 90: Line 90:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|First, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n\rightarrow \infty}\cos(n\pi)\bigg(\frac{1+n}{n}\bigg)^n=\lim_{n\rightarrow \infty} (-1)^n\bigg(\frac{1+n}{n}\bigg)^n.</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 +
|-
 +
|Now, let
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{y} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg(\frac{1+n}{n}\bigg)^n.}
 +
\end{array}</math>
 +
|-
 +
|We then take the natural log of both sides to get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\ln y = \ln\bigg(\lim_{n\rightarrow \infty} \bigg(\frac{1+n}{n}\bigg)^n\bigg).</math>
 +
|-
 +
|We can interchange limits and continuous functions.
 +
|-
 +
|Therefore, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\ln y} & = & \displaystyle{\lim_{n\rightarrow \infty} \ln \bigg(\frac{1+n}{n}\bigg)^n}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(\frac{1+n}{n}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{1+n}{n}\bigg)}{\frac{1}{n}}.}
 +
\end{array}</math>
 +
|-
 +
|Now, this limit has the form &nbsp;<math style="vertical-align: -13px">\frac{0}{0}.</math>
 +
|-
 +
|Hence, we can use L'Hopital's Rule to calculate this limit.
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 
|-
 
|-
|
+
|Now, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(\frac{1+n}{n}\bigg)}{\frac{1}{n}}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(\frac{1+x}{x}\bigg)}{\frac{1}{x}}}\\
 +
&&\\
 +
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{x}{1+x}\frac{-1}{x^2}}{\big(-\frac{1}{x^2}\big)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{x}{1+x}}\\
 +
&&\\
 +
& = & \displaystyle{1.}
 +
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 2: &nbsp;
+
!Step 4: &nbsp;
 +
|-
 +
|Since &nbsp;<math>\ln y= 1,</math>&nbsp; we know
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=e.</math>
 +
|-
 +
|Since
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\lim_{n\rightarrow \infty} \bigg(\frac{1+n}{n}\bigg)^n\neq 0,</math>
 
|-
 
|-
|
+
|we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty} a_n} & = & \displaystyle{\lim_{n\rightarrow \infty} (-1)^n\bigg(\frac{1+n}{n}\bigg)^n}\\
 +
&&\\
 +
& = & \displaystyle{\text{DNE}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 112: Line 173:
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp;<math>e^{\frac{1}{2}}</math>
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp;<math>e^{\frac{1}{2}}</math>
 
|-
 
|-
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp;
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp;<math>\text{DNE}</math>
 
|}
 
|}
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:46, 5 March 2017

Which of the following sequences    converges? Which diverges? Give reasons for your answers!

(a)  

(b)  

Foundations:  
L'Hôpital's Rule

        Suppose that    and    are both zero or both  

        If    is finite or  

        then  


Solution:

(a)

Step 1:  
Let

       

We then take the natural log of both sides to get
       
Step 2:  
We can interchange limits and continuous functions.
Therefore, we have

       

Now, this limit has the form  
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

       

Step 4:  
Since    we know
       

(b)

Step 1:  
First, we have
       
Step 2:  
Now, let
       
We then take the natural log of both sides to get
       
We can interchange limits and continuous functions.
Therefore, we have

       

Now, this limit has the form  
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

       

Step 4:  
Since    we know
       
Since
       
we have

       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam