Difference between revisions of "009C Sample Final 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 57: Line 57:
 
|-
 
|-
 
|Hence, we can use L'Hopital's Rule to calculate this limit.
 
|Hence, we can use L'Hopital's Rule to calculate this limit.
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3:  
 +
|-
 +
|Now, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2n}\bigg)}{\frac{1}{n}}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2x}\bigg)}{\frac{1}{x}}}\\
 +
&&\\
 +
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{2x}{2x+1}\big(\frac{-1}{2x^2}\big)}{\big(-\frac{1}{x^2}\big)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{1}{2}\bigg(\frac{2x}{2x+1}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}.}
 +
\end{array}</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 4: &nbsp;
 +
|-
 +
|Since &nbsp;<math style="vertical-align: -13px">\ln y= \frac{1}{2},</math>&nbsp; we know
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=e^{\frac{1}{2}}.</math>
 
|}
 
|}
  
Line 85: Line 110:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp;<math>e^{\frac{1}{2}}</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)'''  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp;
 
|}
 
|}
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 17:33, 5 March 2017

Which of the following sequences    converges? Which diverges? Give reasons for your answers!

(a)  

(b)  

Foundations:  
L'Hôpital's Rule

        Suppose that    and    are both zero or both  

        If    is finite or  

        then  


Solution:

(a)

Step 1:  
Let

       

We then take the natural log of both sides to get
       
Step 2:  
We can interchange limits and continuous functions.
Therefore, we have

       

Now, this limit has the form  
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

       

Step 4:  
Since    we know
       

(b)

Step 1:  
Step 2:  


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam