Difference between revisions of "009C Sample Final 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 28: Line 28:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Let
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{y} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg(1+\frac{1}{2n}\bigg)^n.}
 +
\end{array}</math>
 
|-
 
|-
|
+
|We then take the natural log of both sides to get
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\ln y = \ln\bigg(\lim_{n\rightarrow \infty} \bigg(1+\frac{1}{2n}\bigg)^n\bigg).</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|We can interchange limits and continuous functions.
 +
|-
 +
|Therefore, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\ln y} & = & \displaystyle{\lim_{n\rightarrow \infty} \ln \bigg(1+\frac{1}{2n}\bigg)^n}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(1+\frac{1}{2n}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1+\frac{1}{2n}\bigg)}{\frac{1}{n}}.}
 +
\end{array}</math>
 +
|-
 +
|Now, this limit has the form &nbsp;<math style="vertical-align: -13px">\frac{0}{0}.</math>
 +
|-
 +
|Hence, we can use L'Hopital's Rule to calculate this limit.
 
|-
 
|-
 
|
 
|

Revision as of 17:25, 5 March 2017

Which of the following sequences    converges? Which diverges? Give reasons for your answers!

(a)  

(b)  

Foundations:  
L'Hôpital's Rule

        Suppose that    and    are both zero or both  

        If    is finite or  

        then  


Solution:

(a)

Step 1:  
Let

       

We then take the natural log of both sides to get
       
Step 2:  
We can interchange limits and continuous functions.
Therefore, we have

       

Now, this limit has the form  
Hence, we can use L'Hopital's Rule to calculate this limit.

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)
   (b)

Return to Sample Exam