Difference between revisions of "009C Sample Final 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 42: Line 42:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We use the Ratio Test to determine the radius of convergence.
 
|-
 
|-
|
+
|We have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{(-1)^{n+1}(x)^{n+2}}{(n+2)}\frac{n+1}{(-1)^n(x)^{n+1}}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|(-1)(x)\frac{n+1}{n+2}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} |x|\frac{n+1}{n+2}}\\
 +
&&\\
 +
& = & \displaystyle{|x|\lim_{n\rightarrow \infty} \frac{n+1}{n+2}}\\
 +
&&\\
 +
& = & \displaystyle{|x|.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 52: Line 63:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|The Ratio Test tells us this series is absolutely convergent if &nbsp;<math style="vertical-align: -5px">|x|<1.</math>
 
|-
 
|-
|
+
|Hence, the Radius of Convergence of this series is &nbsp;<math style="vertical-align: -1px">R=1.</math>
 
|}
 
|}
  
Line 121: Line 132:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The radius of convergence is &nbsp;<math style="vertical-align: -1px">R=1.</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)'''
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp;
 
|-
 
|-
|&nbsp;&nbsp; '''(c)'''  
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp;
 
|-
 
|-
|&nbsp;&nbsp; '''(d)'''  
+
|&nbsp; &nbsp; '''(d)''' &nbsp; &nbsp;
 
|}
 
|}
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:33, 5 March 2017

Consider the power series

(a) Find the radius of convergence of the above power series.

(b) Find the interval of convergence of the above power series.

(c) Find the closed formula for the function    to which the power series converges.

(d) Does the series

converge? If so, find its sum.

Foundations:  
Ratio Test
        Let    be a series and  
        Then,

        If    the series is absolutely convergent.

        If    the series is divergent.

        If    the test is inconclusive.


Solution:

(a)

Step 1:  
We use the Ratio Test to determine the radius of convergence.
We have

       

Step 2:  
The Ratio Test tells us this series is absolutely convergent if  
Hence, the Radius of Convergence of this series is  

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  

(d)

Step 1:  
Step 2:  


Final Answer:  
    (a)     The radius of convergence is  
    (b)    
    (c)    
    (d)    

Return to Sample Exam