Difference between revisions of "009C Sample Final 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math>\{a_n\}</math>&nbsp; and &nbsp;<math>\{b_n\}</math>&nbsp; be positive sequences.
 
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math>\{a_n\}</math>&nbsp; and &nbsp;<math>\{b_n\}</math>&nbsp; be positive sequences.
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math>\lim_{n\rightarrow \infty} \frac{a_n}{b_n}=L,</math>&nbsp; where &nbsp;<math>L</math> &nbsp; is a positive real number,
+
|&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -16px">\lim_{n\rightarrow \infty} \frac{a_n}{b_n}=L,</math>&nbsp; where &nbsp;<math style="vertical-align: -1px">L</math> &nbsp;is a positive real number,
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; then &nbsp;<math>\sum_{n=1}^\infty a_n</math>&nbsp; and &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; either both converge or both diverge.
+
|&nbsp; &nbsp; &nbsp; &nbsp; then &nbsp;<math style="vertical-align: -20px">\sum_{n=1}^\infty a_n</math>&nbsp; and &nbsp;<math style="vertical-align: -20px">\sum_{n=1}^\infty b_n</math>&nbsp; either both converge or both diverge.
 
|}
 
|}
  
Line 29: Line 29:
 
|This means that we can use a comparison test on this series.
 
|This means that we can use a comparison test on this series.
 
|-
 
|-
|Let &nbsp;<math style="vertical-align: -14px">a_n=\frac{n^3+7n}{\sqrt{1+n^{10}}}.</math>
+
|Let &nbsp;<math style="vertical-align: -19px">a_n=\frac{n^3+7n}{\sqrt{1+n^{10}}}.</math>
 
|}
 
|}
  

Revision as of 15:48, 5 March 2017

Test if the following series converges or diverges. Give reasons and clearly state if you are using any standard test.

Foundations:  
Limit Comparison Test
        Let    and    be positive sequences.
        If    where    is a positive real number,
        then    and    either both converge or both diverge.


Solution:

Step 1:  
First, we note that
       
for all  
This means that we can use a comparison test on this series.
Let  
Step 2:  
Let  
We want to compare the series in this problem with
       
This is a  -series with  
Hence,    converges
Step 3:  
Now, we have
       
Therefore, the series
       
converges by the Limit Comparison Test.


Final Answer:  
        converges

Return to Sample Exam