Difference between revisions of "009C Sample Final 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 6: Line 6:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|'''Limit Comparison Test'''
 
|-
 
|-
|  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math>\{a_n\}</math>&nbsp; and &nbsp;<math>\{b_n\}</math>&nbsp; be positive sequences.
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math>\lim_{n\rightarrow \infty} \frac{a_n}{b_n}=L,</math>&nbsp; where &nbsp;<math>L</math> &nbsp; is a positive real number,
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; then &nbsp;<math>\sum_{n=1}^\infty a_n</math>&nbsp; and &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; either both converge or both diverge.
 
|}
 
|}
  
Line 23: Line 21:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|First, we note that
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{n^3+7n}{\sqrt{1+n^{10}}}>0</math>
 +
|-
 +
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|-
|
+
|This means that we can use a comparison test on this series.
 
|-
 
|-
|
+
|Let &nbsp;<math style="vertical-align: -14px">a_n=\frac{n^3+7n}{\sqrt{1+n^{10}}}.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Let &nbsp;<math style="vertical-align: -14px">b_n=\frac{1}{n^2}.</math>
 +
|-
 +
|We want to compare the series in this problem with
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty b_n=\sum_{n=1}^\infty \frac{1}{n^2}.</math>
 +
|-
 +
|This is a &nbsp;<math style="vertical-align: -4px">p</math>-series with &nbsp;<math style="vertical-align: -4px">p=2.</math>
 +
|-
 +
|Hence, &nbsp;<math>\sum_{n=1}^\infty b_n</math>&nbsp; converges
 
|-
 
|-
 
|
 
|
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 
|-
 
|-
|
+
|Now, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty} \frac{a_n}{b_n}} & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{(\frac{n^3+7n}{\sqrt{1+n^{10}}})}{(\frac{1}{n^2})}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n^5+7n^3}{\sqrt{1+n^{10}}}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n^5+7n^3}{\sqrt{1+n^{10}}} \bigg(\frac{\frac{1}{n^5}}{\frac{1}{n^5}}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{1+\frac{7}{n^4}}{\sqrt{\frac{1}{n^{10}}+1}}}\\
 +
&&\\
 +
& = & \displaystyle{1.}
 +
\end{array}</math>
 +
|-
 +
|Therefore, the series
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^{\infty} \frac{n^3+7n}{\sqrt{1+n^{10}}}</math>
 +
|-
 +
|converges by the Limit Comparison Test.
 
|}
 
|}
  
Line 42: Line 76:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp;
+
|&nbsp; &nbsp; &nbsp; &nbsp; converges
 
|}
 
|}
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 15:43, 5 March 2017

Test if the following series converges or diverges. Give reasons and clearly state if you are using any standard test.

Foundations:  
Limit Comparison Test
        Let    and    be positive sequences.
        If    where     is a positive real number,
        then    and    either both converge or both diverge.


Solution:

Step 1:  
First, we note that
       
for all  
This means that we can use a comparison test on this series.
Let  
Step 2:  
Let  
We want to compare the series in this problem with
       
This is a  -series with  
Hence,    converges
Step 3:  
Now, we have
       
Therefore, the series
       
converges by the Limit Comparison Test.


Final Answer:  
        converges

Return to Sample Exam