Difference between revisions of "009C Sample Final 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 63: Line 63:
 
|For  
 
|For  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty \frac{(-1)^n}{n},</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}},</math>
 
|-
 
|-
 
|we notice that this series is alternating.  
 
|we notice that this series is alternating.  
 
|-
 
|-
|Let &nbsp;<math style="vertical-align: -14px"> b_n=\frac{1}{n}.</math>
+
|Let &nbsp;<math style="vertical-align: -20px"> b_n=\frac{1}{\sqrt{n}}.</math>
 
|-
 
|-
 
|The sequence &nbsp;<math style="vertical-align: -4px">\{b_n\}</math>&nbsp; is decreasing since
 
|The sequence &nbsp;<math style="vertical-align: -4px">\{b_n\}</math>&nbsp; is decreasing since
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n+1}<\frac{1}{n}</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math>
 
|-
 
|-
 
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
 
|for all &nbsp;<math style="vertical-align: -3px">n\ge 1.</math>
Line 77: Line 77:
 
|Also,  
 
|Also,  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{n}=0.</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{\sqrt{n}}=0.</math>  
 
|-
 
|-
|Therefore, the series &nbsp;<math>\sum_{n=1}^\infty \frac{(-1)^n}{n}</math> &nbsp; converges  
+
|Therefore, the series &nbsp;<math>\sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}</math> &nbsp; converges  
 
|-
 
|-
 
|by the Alternating Series Test.
 
|by the Alternating Series Test.

Revision as of 13:58, 5 March 2017

Consider the series

(a) Test if the series converges absolutely. Give reasons for your answer.

(b) Test if the series converges conditionally. Give reasons for your answer.

Foundations:  
1. A series    is absolutely convergent if
        the series    converges.
2. A series    is conditionally convergent if
        the series    diverges and the series    converges.


Solution:

(a)

Step 1:  
First, we take the absolute value of the terms in the original series.
Let  
Therefore,
       
Step 2:  
This series is a  -series with   
Therefore, it diverges.
Hence, the series
       
is not absolutely convergent.

(b)

Step 1:  
For
       
we notice that this series is alternating.
Let  
The sequence    is decreasing since
       
for all  
Also,
       
Therefore, the series     converges
by the Alternating Series Test.
Step 2:  
Since the series     is not absolutely convergent but convergent,
this series is conditionally convergent.


Final Answer:  
   (a)    not absolutely convergent
   (b)    conditionally convergent

Return to Sample Exam