Difference between revisions of "009C Sample Final 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 27: Line 27:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we take the absolute value of the terms in the original series.
 +
|-
 +
|Let &nbsp;<math style="vertical-align: -20px">a_n=\frac{(-1)^n}{\sqrt{n}}.</math>
 
|-
 
|-
|
+
|Therefore,
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\sum_{n=1}^\infty |a_n|} & = & \displaystyle{\sum_{n=1}^\infty \bigg|\frac{(-1)^n}{\sqrt{n}}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{\sum_{n=1}^\infty \frac{1}{\sqrt{n}}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 37: Line 43:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|This series is a &nbsp;<math style="vertical-align: -5px">p</math>-series with &nbsp;<math style="vertical-align: -14px">p=\frac{1}{2}.</math>&nbsp;
 +
|-
 +
|Therefore, it diverges.
 +
|-
 +
|Hence, the series
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty \frac{(-1)^n}{\sqrt{n}}</math>
 +
|-
 +
|is not absolutely convergent.
 
|-
 
|-
 
|
 
|
Line 66: Line 80:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)'''  
+
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp; not absolutely convergent
 
|-
 
|-
 
|&nbsp;&nbsp; '''(b)'''  
 
|&nbsp;&nbsp; '''(b)'''  
 
|}
 
|}
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:52, 5 March 2017

Consider the series

(a) Test if the series converges absolutely. Give reasons for your answer.

(b) Test if the series converges conditionally. Give reasons for your answer.

Foundations:  
1. A series    is absolutely convergent if
        the series    converges.
2. A series    is conditionally convergent if
        the series    diverges and the series    converges.


Solution:

(a)

Step 1:  
First, we take the absolute value of the terms in the original series.
Let  
Therefore,
       
Step 2:  
This series is a  -series with   
Therefore, it diverges.
Hence, the series
       
is not absolutely convergent.

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    not absolutely convergent
   (b)

Return to Sample Exam