Difference between revisions of "009C Sample Final 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|'''1.''' '''Ratio Test'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math style="vertical-align: -7px">\sum a_n</math>&nbsp; be a series and &nbsp;<math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math>
 
|-
 
|-
|  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Then,
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L<1,</math>&nbsp; the series is absolutely convergent.
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L>1,</math>&nbsp; the series is divergent.
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -4px">L=1,</math>&nbsp; the test is inconclusive.
 +
|-
 +
|'''2.''' If a series absolutely converges, then it also converges.
 +
|-
 +
|'''3.''' '''Alternating Series Test'''
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Let &nbsp;<math>\{a_n\}</math>&nbsp; be a positive, decreasing sequence where &nbsp;<math style="vertical-align: -11px">\lim_{n\rightarrow \infty} a_n=0.</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Then, &nbsp;<math>\sum_{n=1}^\infty (-1)^na_n</math>&nbsp; and &nbsp;<math>\sum_{n=1}^\infty (-1)^{n+1}a_n</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; converge.
 
|}
 
|}
  
Line 27: Line 42:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|We begin by using the Ratio Test.
 
|-
 
|-
|
+
|We have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)!}{(2(n+1))!} \frac{(2n)!}{n!}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)n!}{(2n+2)(2n+1)(2n)!} \frac{(2n)!}{n!}\bigg|}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n+1}{(2n+2)(2n+1)}}\\
 +
&&\\
 +
& = & \displaystyle{0.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 37: Line 61:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Since
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} \bigg|\frac{a_{n+1}}{a_n}\bigg|=0<1,</math>
 +
|-
 +
|the series is absolutely convergent by the Ratio Test.
 
|-
 
|-
|
+
|Therefore, the series converges.
 
|}
 
|}
  
Line 47: Line 75:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|For
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty (-1)^n\frac{1}{n+1},</math>
 +
|-
 +
|we notice that this series is alternating.
 +
|-
 +
|Let &nbsp;<math style="vertical-align: -16px"> b_n=\frac{1}{n+1}.</math>
 +
|-
 +
|The sequence &nbsp;<math style="vertical-align: -5px">\{b_n\}</math>&nbsp; is decreasing since
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n+2}<\frac{1}{n+1}</math>
 
|-
 
|-
|
+
|for all &nbsp;<math style="vertical-align: -3px">n\ge 0.</math>
 
|}
 
|}
  
Line 57: Line 93:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Also,
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{n+1}=0.</math>
 +
|-
 +
|Therefore, the series &nbsp;<math>\sum_{n=1}^\infty (-1)^n\frac{1}{n+1}</math> &nbsp; converges
 
|-
 
|-
|
+
|by the Alternating Series Test.
 
|}
 
|}
  
Line 66: Line 106:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)'''  
+
|&nbsp;&nbsp; '''(a)''' &nbsp;&nbsp; converges
 
|-
 
|-
|&nbsp;&nbsp; '''(b)'''  
+
|&nbsp;&nbsp; '''(b)''' &nbsp;&nbsp; converges
 
|}
 
|}
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:28, 5 March 2017

Determine if the following series converges or diverges. Please give your reason(s).

(a)  

(b)  

Foundations:  
1. Ratio Test
        Let    be a series and  
        Then,

        If    the series is absolutely convergent.

        If    the series is divergent.

        If    the test is inconclusive.

2. If a series absolutely converges, then it also converges.
3. Alternating Series Test
        Let    be a positive, decreasing sequence where  
        Then,    and  
        converge.


Solution:

(a)

Step 1:  
We begin by using the Ratio Test.
We have

       

Step 2:  
Since
       
the series is absolutely convergent by the Ratio Test.
Therefore, the series converges.

(b)

Step 1:  
For
       
we notice that this series is alternating.
Let  
The sequence    is decreasing since
       
for all  
Step 2:  
Also,
       
Therefore, the series     converges
by the Alternating Series Test.


Final Answer:  
   (a)    converges
   (b)    converges

Return to Sample Exam