Difference between revisions of "009C Sample Final 3, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 8: | Line 8: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |'''1.''' '''Ratio Test''' |
+ | |- | ||
+ | | Let <math style="vertical-align: -7px">\sum a_n</math> be a series and <math>L=\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|.</math> | ||
|- | |- | ||
− | | | + | | Then, |
|- | |- | ||
| | | | ||
+ | If <math style="vertical-align: -4px">L<1,</math> the series is absolutely convergent. | ||
|- | |- | ||
| | | | ||
+ | If <math style="vertical-align: -4px">L>1,</math> the series is divergent. | ||
|- | |- | ||
| | | | ||
+ | If <math style="vertical-align: -4px">L=1,</math> the test is inconclusive. | ||
+ | |- | ||
+ | |'''2.''' If a series absolutely converges, then it also converges. | ||
+ | |- | ||
+ | |'''3.''' '''Alternating Series Test''' | ||
+ | |- | ||
+ | | Let <math>\{a_n\}</math> be a positive, decreasing sequence where <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} a_n=0.</math> | ||
+ | |- | ||
+ | | Then, <math>\sum_{n=1}^\infty (-1)^na_n</math> and <math>\sum_{n=1}^\infty (-1)^{n+1}a_n</math> | ||
+ | |- | ||
+ | | converge. | ||
|} | |} | ||
Line 27: | Line 42: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |We begin by using the Ratio Test. |
|- | |- | ||
− | | | + | |We have |
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\lim_{n\rightarrow \infty}\bigg|\frac{a_{n+1}}{a_n}\bigg|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)!}{(2(n+1))!} \frac{(2n)!}{n!}\bigg|}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| \frac{(n+1)n!}{(2n+2)(2n+1)(2n)!} \frac{(2n)!}{n!}\bigg|}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{n+1}{(2n+2)(2n+1)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{0.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 37: | Line 61: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Since |
+ | |- | ||
+ | | <math>\lim_{n\rightarrow \infty} \bigg|\frac{a_{n+1}}{a_n}\bigg|=0<1,</math> | ||
+ | |- | ||
+ | |the series is absolutely convergent by the Ratio Test. | ||
|- | |- | ||
− | | | + | |Therefore, the series converges. |
|} | |} | ||
Line 47: | Line 75: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |For |
+ | |- | ||
+ | | <math>\sum_{n=1}^\infty (-1)^n\frac{1}{n+1},</math> | ||
+ | |- | ||
+ | |we notice that this series is alternating. | ||
+ | |- | ||
+ | |Let <math style="vertical-align: -16px"> b_n=\frac{1}{n+1}.</math> | ||
+ | |- | ||
+ | |The sequence <math style="vertical-align: -5px">\{b_n\}</math> is decreasing since | ||
|- | |- | ||
− | | | + | | <math>\frac{1}{n+2}<\frac{1}{n+1}</math> |
|- | |- | ||
− | | | + | |for all <math style="vertical-align: -3px">n\ge 0.</math> |
|} | |} | ||
Line 57: | Line 93: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Also, |
+ | |- | ||
+ | | <math>\lim_{n\rightarrow \infty}b_n=\lim_{n\rightarrow \infty}\frac{1}{n+1}=0.</math> | ||
+ | |- | ||
+ | |Therefore, the series <math>\sum_{n=1}^\infty (-1)^n\frac{1}{n+1}</math> converges | ||
|- | |- | ||
− | | | + | |by the Alternating Series Test. |
|} | |} | ||
Line 66: | Line 106: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' | + | | '''(a)''' converges |
|- | |- | ||
− | | '''(b)''' | + | | '''(b)''' converges |
|} | |} | ||
[[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 13:28, 5 March 2017
Determine if the following series converges or diverges. Please give your reason(s).
(a)
(b)
Foundations: |
---|
1. Ratio Test |
Let be a series and |
Then, |
If the series is absolutely convergent. |
If the series is divergent. |
If the test is inconclusive. |
2. If a series absolutely converges, then it also converges. |
3. Alternating Series Test |
Let be a positive, decreasing sequence where |
Then, and |
converge. |
Solution:
(a)
Step 1: |
---|
We begin by using the Ratio Test. |
We have |
|
Step 2: |
---|
Since |
the series is absolutely convergent by the Ratio Test. |
Therefore, the series converges. |
(b)
Step 1: |
---|
For |
we notice that this series is alternating. |
Let |
The sequence is decreasing since |
for all |
Step 2: |
---|
Also, |
Therefore, the series converges |
by the Alternating Series Test. |
Final Answer: |
---|
(a) converges |
(b) converges |