Difference between revisions of "009C Sample Final 2, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
Line 77: Line 77:
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
\displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{2\cos(2\theta)\sin\theta+\sin(2\theta)\cos\theta}{2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta}\bigg)}\\
+
\displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{2\cos^2\theta \sin\theta-\sin^3\theta}{\cos^3\theta-2\sin^2\theta\cos\theta}\bigg)}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)(-4\sin(2\theta)\sin \theta +2\cos(2\theta)\cos(theta)+2\cos(2\theta)\cos\theta-\sin(2\theta)\sin \theta)}{(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)^2}}\\
+
& = & \displaystyle{\frac{(\cos^3\theta-2\sin^2\theta\cos\theta)(-4\cos\theta\sin^2\theta+2\cos^3\theta-3\sin^2\theta\cos\theta)-(2\cos^2\theta\sin\theta-\sin^3\theta)(-3\cos^2\theta\sin\theta-4\sin \theta\cos^2\theta+2\sin^3\theta)}{(\cos^3\theta-2\sin^2\theta\cos\theta)^2}.}
&&\\
 
& = & \displaystyle{\frac{2\cos^2(2\theta)+2\sin^2(2\theta)-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta+\sin^2\theta+\cos^2\theta}{(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)^2}}\\
 
&&\\
 
& = & \displaystyle{\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)^2}}\\
 
 
\end{array}</math>
 
\end{array}</math>
|-
 
|since &nbsp;<math style="vertical-align: -2px">\sin^2\theta+\cos^2\theta=1</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">2\cos^2(2\theta)+2\sin^2(2\theta)=2.</math>&nbsp;
 
 
|}
 
|}
  
Line 95: Line 89:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{d^2y}{dx^2}=\frac{(\cos^3\theta-2\sin^2\theta\cos\theta)(-4\cos\theta\sin^2\theta+2\cos^3\theta-3\sin^2\theta\cos\theta)-(2\cos^2\theta\sin\theta-\sin^3\theta)(-3\cos^2\theta\sin\theta-4\sin \theta\cos^2\theta+2\sin^3\theta)}{(\cos^3\theta-2\sin^2\theta\cos\theta)^2(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)}.</math>
 
|-
 
|-
 
|
 
|
Line 109: Line 103:
 
|-
 
|-
 
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp;
 
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp;
 +
|-
 +
|<math>\frac{d^2y}{dx^2}=\frac{(\cos^3\theta-2\sin^2\theta\cos\theta)(-4\cos\theta\sin^2\theta+2\cos^3\theta-3\sin^2\theta\cos\theta)-(2\cos^2\theta\sin\theta-\sin^3\theta)(-3\cos^2\theta\sin\theta-4\sin \theta\cos^2\theta+2\sin^3\theta)}{(\cos^3\theta-2\sin^2\theta\cos\theta)^2(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)}</math>
 
|}
 
|}
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:19, 5 March 2017

A curve is given in polar coordinates by

(a) Sketch the curve.

(b) Compute  

(c) Compute  

Foundations:  
How do you calculate     for a polar curve  

       Since     we have

       


Solution:

(a)  
Insert sketch of graph

(b)

Step 1:  
Since  

       

Step 2:  
Since

       

we have

       

since
       

(c)

Step 1:  
We have  
So, first we need to find  
We have

       

Step 2:  
Now, using the resulting formula for     we get

       


Final Answer:  
    (a)    See above
    (b)    
    (c)    

Return to Sample Exam