Difference between revisions of "009C Sample Final 2, Problem 9"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 77: | Line 77: | ||
| | | | ||
<math>\begin{array}{rcl} | <math>\begin{array}{rcl} | ||
− | \displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{2\cos | + | \displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{2\cos^2\theta \sin\theta-\sin^3\theta}{\cos^3\theta-2\sin^2\theta\cos\theta}\bigg)}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{( | + | & = & \displaystyle{\frac{(\cos^3\theta-2\sin^2\theta\cos\theta)(-4\cos\theta\sin^2\theta+2\cos^3\theta-3\sin^2\theta\cos\theta)-(2\cos^2\theta\sin\theta-\sin^3\theta)(-3\cos^2\theta\sin\theta-4\sin \theta\cos^2\theta+2\sin^3\theta)}{(\cos^3\theta-2\sin^2\theta\cos\theta)^2}.} |
− | |||
− | |||
− | |||
− | |||
\end{array}</math> | \end{array}</math> | ||
− | |||
− | |||
|} | |} | ||
Line 95: | Line 89: | ||
|- | |- | ||
| | | | ||
− | <math>\frac{d^2y}{dx^2}=\frac{3- | + | <math>\frac{d^2y}{dx^2}=\frac{(\cos^3\theta-2\sin^2\theta\cos\theta)(-4\cos\theta\sin^2\theta+2\cos^3\theta-3\sin^2\theta\cos\theta)-(2\cos^2\theta\sin\theta-\sin^3\theta)(-3\cos^2\theta\sin\theta-4\sin \theta\cos^2\theta+2\sin^3\theta)}{(\cos^3\theta-2\sin^2\theta\cos\theta)^2(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)}.</math> |
|- | |- | ||
| | | | ||
Line 109: | Line 103: | ||
|- | |- | ||
| '''(c)''' | | '''(c)''' | ||
+ | |- | ||
+ | |<math>\frac{d^2y}{dx^2}=\frac{(\cos^3\theta-2\sin^2\theta\cos\theta)(-4\cos\theta\sin^2\theta+2\cos^3\theta-3\sin^2\theta\cos\theta)-(2\cos^2\theta\sin\theta-\sin^3\theta)(-3\cos^2\theta\sin\theta-4\sin \theta\cos^2\theta+2\sin^3\theta)}{(\cos^3\theta-2\sin^2\theta\cos\theta)^2(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)}</math> | ||
|} | |} | ||
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 13:19, 5 March 2017
A curve is given in polar coordinates by
(a) Sketch the curve.
(b) Compute
(c) Compute
Foundations: |
---|
How do you calculate for a polar curve |
Since we have |
|
Solution:
(a) |
---|
Insert sketch of graph |
(b)
Step 1: |
---|
Since |
|
Step 2: |
---|
Since |
|
we have |
|
since |
(c)
Step 1: |
---|
We have |
So, first we need to find |
We have |
|
Step 2: |
---|
Now, using the resulting formula for we get |
|
Final Answer: |
---|
(a) See above |
(b) |
(c) |