Difference between revisions of "009C Sample Final 2, Problem 9"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 53: | Line 53: | ||
|- | |- | ||
| | | | ||
− | <math | + | <math>\begin{array}{rcl} |
+ | \displaystyle{y'} & = & \displaystyle{\frac{2\cos(2\theta)\sin\theta+\sin(2\theta)\cos\theta}{2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{2\cos^2\theta \sin\theta-\sin^3\theta}{\cos^3\theta-2\sin^2\theta\cos\theta}} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |since | ||
+ | |- | ||
+ | | <math>\sin(2\theta)=2\sin\theta\cos\theta,~\cos(2\theta)=\cos^2\theta-\sin^2\theta.</math> | ||
|} | |} | ||
Line 69: | Line 77: | ||
| | | | ||
<math>\begin{array}{rcl} | <math>\begin{array}{rcl} | ||
− | \displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{\sin(2\theta) | + | \displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{2\cos(2\theta)\sin\theta+\sin(2\theta)\cos\theta}{2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta}\bigg)}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{(\cos(2\theta)-\sin\theta)( | + | & = & \displaystyle{\frac{(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)(-4\sin(2\theta)\sin \theta +2\cos(2\theta)\cos(theta)+2\cos(2\theta)\cos\theta-\sin(2\theta)\sin \theta)}{(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)^2}}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{2\cos^2(2\theta)+2\sin^2(2\theta)-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta+\sin^2\theta+\cos^2\theta}{(\cos(2\theta)-\sin\theta)^2}}\\ | + | & = & \displaystyle{\frac{2\cos^2(2\theta)+2\sin^2(2\theta)-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta+\sin^2\theta+\cos^2\theta}{(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)^2}}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^2}}\\ | + | & = & \displaystyle{\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta)^2}}\\ |
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
Line 98: | Line 106: | ||
| '''(a)''' See above | | '''(a)''' See above | ||
|- | |- | ||
− | | '''(b)''' <math style="vertical-align: -18px">y'=\frac{2\cos | + | | '''(b)''' <math style="vertical-align: -18px">y'=\frac{2\cos^2\theta \sin\theta-\sin^3\theta}{\cos^3\theta-2\sin^2\theta\cos\theta}</math> |
|- | |- | ||
| '''(c)''' | | '''(c)''' | ||
|} | |} | ||
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 13:08, 5 March 2017
A curve is given in polar coordinates by
(a) Sketch the curve.
(b) Compute
(c) Compute
Foundations: |
---|
How do you calculate for a polar curve |
Since we have |
|
Solution:
(a) |
---|
Insert sketch of graph |
(b)
Step 1: |
---|
Since |
|
Step 2: |
---|
Since |
|
we have |
|
since |
(c)
Step 1: |
---|
We have |
So, first we need to find |
We have |
|
since and |
Step 2: |
---|
Now, using the resulting formula for we get |
|
Final Answer: |
---|
(a) See above |
(b) |
(c) |