Difference between revisions of "009C Sample Final 2, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 14: | Line 14: | ||
| where <math style="vertical-align: -18px">R_n(x)=\frac{f^{n+1}(z_x)}{(n+1)!}(x-c)^{n+1}.</math> | | where <math style="vertical-align: -18px">R_n(x)=\frac{f^{n+1}(z_x)}{(n+1)!}(x-c)^{n+1}.</math> | ||
|- | |- | ||
− | | Also, <math style="vertical-align: -17px">|R_n(x)|\le \frac{\max |f^{n+1}(z)|}{(n+1)!}|(x-c)^{n+1}|.</math> | + | | Also, <math style="vertical-align: -17px">|R_n(x)|\le \frac{\max |f^{n+1}(z)|}{(n+1)!}|(x-c)^{n+1}|.</math> |
|} | |} | ||
Line 23: | Line 23: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Using Taylor's Theorem, we have that the error in approximating <math>\cos \frac{\pi}{3}</math> with | + | |Using Taylor's Theorem, we have that the error in approximating <math style="vertical-align: -13px">\cos \frac{\pi}{3}</math> with |
|- | |- | ||
− | |the Maclaurin polynomial of degree <math>n</math> is <math>R_n\bigg(\frac{\pi}{3}\bigg)</math> where | + | |the Maclaurin polynomial of degree <math style="vertical-align: 0px">n</math> is <math style="vertical-align: -16px">R_n\bigg(\frac{\pi}{3}\bigg)</math> where |
|- | |- | ||
| <math>\bigg|R_n\bigg(\frac{\pi}{3}\bigg)\bigg|\le \frac{\max |f^{n+1}(z)|}{(n+1)!}\bigg|\bigg(\frac{\pi}{3}-0\bigg)^{n+1}\bigg|.</math> | | <math>\bigg|R_n\bigg(\frac{\pi}{3}\bigg)\bigg|\le \frac{\max |f^{n+1}(z)|}{(n+1)!}\bigg|\bigg(\frac{\pi}{3}-0\bigg)^{n+1}\bigg|.</math> | ||
Line 35: | Line 35: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |We note that <math>|f^{n+1}(z)|=|\cos(z)|\le 1</math> or <math>|f^{n+1}(z)|=|\cos(z)|\le 1.</math> | + | |We note that |
+ | |- | ||
+ | | <math style="vertical-align: -5px">|f^{n+1}(z)|=|\cos(z)|\le 1</math> or <math style="vertical-align: -5px">|f^{n+1}(z)|=|\cos(z)|\le 1.</math> | ||
|- | |- | ||
|Therefore, we have | |Therefore, we have | ||
Line 78: | Line 80: | ||
</table> | </table> | ||
|- | |- | ||
− | |So, <math>n=7</math> is the smallest value of <math>n</math> where the error is less than or equal to 0.0001. | + | |So, <math style="vertical-align: 0px">n=7</math> is the smallest value of <math style="vertical-align: 0px">n</math> where the error is less than or equal to 0.0001. |
|- | |- | ||
− | |Therefore, for <math>n=7</math> the Maclaurin polynomial approximates <math>\cos \frac{\pi}{3}</math> within 0.0001 of the actual value. | + | |Therefore, for <math style="vertical-align: 0px">n=7</math> the Maclaurin polynomial approximates <math style="vertical-align: -13px">\cos \frac{\pi}{3}</math> within 0.0001 of the actual value. |
|} | |} | ||
Line 87: | Line 89: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | <math>n=7 | + | | <math>n=7</math> |
|} | |} | ||
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 12:48, 5 March 2017
Find such that the Maclaurin polynomial of degree of approximates within 0.0001 of the actual value.
Foundations: |
---|
Taylor's Theorem |
Let be a function whose th derivative exists on an interval and let be in |
Then, for each in there exists between and such that |
where |
Also, |
Solution:
Step 1: |
---|
Using Taylor's Theorem, we have that the error in approximating with |
the Maclaurin polynomial of degree is where |
Step 2: | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
We note that | ||||||||||||||||
or | ||||||||||||||||
Therefore, we have | ||||||||||||||||
Now, we have the following table. | ||||||||||||||||
So, is the smallest value of where the error is less than or equal to 0.0001. | ||||||||||||||||
Therefore, for the Maclaurin polynomial approximates within 0.0001 of the actual value. |
Final Answer: |
---|