Difference between revisions of "009C Sample Final 2, Problem 9"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 61: | Line 61: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |We have <math>\frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math> |
+ | |- | ||
+ | |So, first we need to find <math>\frac{dy'}{d\theta}.</math> | ||
+ | |- | ||
+ | |We have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{(\cos(2\theta)-\sin\theta)(2\cos(2\theta)-\sin\theta)-(\sin(2\theta)+\cos\theta)(-2\sin(2\theta)-\cos\theta)}{(\cos(2\theta)-\sin\theta)^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{2\cos^2(2\theta)+2\sin^2(2\theta)-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta+\sin^2\theta+\cos^2\theta}{(\cos(2\theta)-\sin\theta)^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^2}}\\ | ||
+ | \end{array}</math> | ||
|- | |- | ||
− | | | + | |since <math style="vertical-align: -2px">\sin^2\theta+\cos^2\theta=1</math> and <math style="vertical-align: -5px">2\cos^2(2\theta)+2\sin^2(2\theta)=2.</math> |
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Now, using the resulting formula for <math>\frac{dy'}{d\theta},</math> we get | ||
|- | |- | ||
| | | | ||
+ | <math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}.</math> | ||
|- | |- | ||
| | | |
Revision as of 21:52, 4 March 2017
A curve is given in polar coordinates by
(a) Sketch the curve.
(b) Compute
(c) Compute
Foundations: |
---|
How do you calculate for a polar curve |
Since we have |
|
Solution:
(a) |
---|
Insert sketch of graph |
(b)
Step 1: |
---|
Since |
|
Step 2: |
---|
Since |
|
we have |
|
(c)
Step 1: |
---|
We have |
So, first we need to find |
We have |
|
since and |
Step 2: |
---|
Now, using the resulting formula for we get |
|
Final Answer: |
---|
(a) See above |
(b) |
(c) |