Difference between revisions of "009C Sample Final 2, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
Line 61: Line 61:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|We have &nbsp; <math>\frac{d^2y}{dx^2}=\frac{\frac{dy'}{d\theta}}{\frac{dr}{d\theta}\cos\theta-r\sin\theta}.</math>
 +
|-
 +
|So, first we need to find &nbsp; <math>\frac{dy'}{d\theta}.</math>
 +
|-
 +
|We have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\frac{dy'}{d\theta}} & = & \displaystyle{\frac{d}{d\theta}\bigg(\frac{\sin(2\theta)+\cos\theta}{\cos(2\theta)-\sin\theta}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{(\cos(2\theta)-\sin\theta)(2\cos(2\theta)-\sin\theta)-(\sin(2\theta)+\cos\theta)(-2\sin(2\theta)-\cos\theta)}{(\cos(2\theta)-\sin\theta)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{2\cos^2(2\theta)+2\sin^2(2\theta)-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta+\sin^2\theta+\cos^2\theta}{(\cos(2\theta)-\sin\theta)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^2}}\\
 +
\end{array}</math>
 
|-
 
|-
|
+
|since &nbsp;<math style="vertical-align: -2px">\sin^2\theta+\cos^2\theta=1</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">2\cos^2(2\theta)+2\sin^2(2\theta)=2.</math>&nbsp;
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Now, using the resulting formula for &nbsp; <math>\frac{dy'}{d\theta},</math>&nbsp; we get
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{d^2y}{dx^2}=\frac{3-3\sin\theta\cos(2\theta)+3\sin(2\theta)\cos\theta}{(\cos(2\theta)-\sin\theta)^3}.</math>
 
|-
 
|-
 
|
 
|

Revision as of 21:52, 4 March 2017

A curve is given in polar coordinates by

(a) Sketch the curve.

(b) Compute  

(c) Compute  

Foundations:  
How do you calculate     for a polar curve  

       Since     we have

       


Solution:

(a)  
Insert sketch of graph

(b)

Step 1:  
Since  

       

Step 2:  
Since

       

we have

       

(c)

Step 1:  
We have  
So, first we need to find  
We have

       

since    and   
Step 2:  
Now, using the resulting formula for     we get

       


Final Answer:  
    (a)    See above
    (b)    
    (c)    

Return to Sample Exam