Difference between revisions of "009C Sample Final 2, Problem 9"

From Grad Wiki
Jump to navigation Jump to search
Line 34: Line 34:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Since &nbsp;<math style="vertical-align: -4px">r=\sin(2\theta),</math>
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\frac{dr}{d\theta}=2\cos(2\theta).</math>
 
|-
 
|-
 
|
 
|
Line 43: Line 44:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Since
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta},</math>
 +
|-
 +
|we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -18px">y'=\frac{2\cos(2\theta)\sin\theta+\sin(2\theta)\cos\theta}{2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta}.</math>
 
|}
 
|}
  
Line 73: Line 80:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp;See above
 
|-
 
|-
|&nbsp;&nbsp; '''(b)'''  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp;<math style="vertical-align: -18px">y'=\frac{2\cos(2\theta)\sin\theta+\sin(2\theta)\cos\theta}{2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta}.</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(c)'''  
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp;
 
|}
 
|}
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 21:50, 4 March 2017

A curve is given in polar coordinates by

(a) Sketch the curve.

(b) Compute  

(c) Compute  

Foundations:  
How do you calculate     for a polar curve  

       Since     we have

       


Solution:

(a)  
Insert sketch of graph

(b)

Step 1:  
Since  

       

Step 2:  
Since

       

we have

       

(c)

Step 1:  
Step 2:  


Final Answer:  
    (a)    See above
    (b)    
    (c)    

Return to Sample Exam