Difference between revisions of "009C Sample Final 2, Problem 9"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 34: | Line 34: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |Since <math style="vertical-align: -4px">r=\sin(2\theta),</math> |
|- | |- | ||
| | | | ||
+ | <math>\frac{dr}{d\theta}=2\cos(2\theta).</math> | ||
|- | |- | ||
| | | | ||
Line 43: | Line 44: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Since | ||
|- | |- | ||
| | | | ||
+ | <math>y'=\frac{dy}{dx}=\frac{\frac{dr}{d\theta}\sin\theta+r\cos\theta}{\frac{dr}{d\theta}\cos\theta-r\sin\theta},</math> | ||
+ | |- | ||
+ | |we have | ||
|- | |- | ||
| | | | ||
+ | <math style="vertical-align: -18px">y'=\frac{2\cos(2\theta)\sin\theta+\sin(2\theta)\cos\theta}{2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta}.</math> | ||
|} | |} | ||
Line 73: | Line 80: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' | + | | '''(a)''' See above |
|- | |- | ||
− | | '''(b)''' | + | | '''(b)''' <math style="vertical-align: -18px">y'=\frac{2\cos(2\theta)\sin\theta+\sin(2\theta)\cos\theta}{2\cos(2\theta)\cos \theta-\sin(2\theta)\sin\theta}.</math> |
|- | |- | ||
− | | '''(c)''' | + | | '''(c)''' |
|} | |} | ||
[[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Final_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 21:50, 4 March 2017
A curve is given in polar coordinates by
(a) Sketch the curve.
(b) Compute
(c) Compute
Foundations: |
---|
How do you calculate for a polar curve |
Since we have |
|
Solution:
(a) |
---|
Insert sketch of graph |
(b)
Step 1: |
---|
Since |
|
Step 2: |
---|
Since |
|
we have |
|
(c)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) See above |
(b) |
(c) |