Difference between revisions of "009C Sample Final 2, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
Line 51: Line 51:
 
|Now, we use &nbsp;<math>u</math>-substitution.  
 
|Now, we use &nbsp;<math>u</math>-substitution.  
 
|-
 
|-
|Let &nbsp;<math>u=4+9t^2.</math>
+
|Let &nbsp;<math style="vertical-align: -2px">u=4+9t^2.</math>
 
|-
 
|-
|Then, &nbsp;<math>du=18tdt</math>&nbsp; and &nbsp;<math>\frac{du}{18}=tdt.</math>
+
|Then, &nbsp;<math style="vertical-align: -2px">du=18tdt</math>&nbsp; and &nbsp;<math style="vertical-align: -15px">\frac{du}{18}=tdt.</math>
 
|-
 
|-
 
|Also, since this is a definite integral, we need to change the bounds of integration.
 
|Also, since this is a definite integral, we need to change the bounds of integration.
Line 59: Line 59:
 
|We have
 
|We have
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp;<math>u_1=4+9(1)^2=13</math>&nbsp; and &nbsp;<math>u_2=4+9(2)^2=40.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -5px">u_1=4+9(1)^2=13</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">u_2=4+9(2)^2=40.</math>
 
|-
 
|-
 
|Hence,
 
|Hence,

Revision as of 21:35, 4 March 2017

Find the length of the curve given by

Foundations:  
The formula for the arc length    of a parametric curve with    is

       


Solution:

Step 1:  
First, we need to calculate    and  
Since  
Since  
Using the formula in Foundations, we have

       

Step 2:  
Now, we have

       

Step 3:  
Now, we use  -substitution.
Let  
Then,    and  
Also, since this is a definite integral, we need to change the bounds of integration.
We have
         and  
Hence,
       


Final Answer:  
       

Return to Sample Exam